用户名: 密码: 验证码:
外源钙离子对盐胁迫玉米气孔特征、光合作用和生物量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of exogenous Ca~(2+) on stomatal traits,photosynthesis,and biomass of maize seedings under salt stress
  • 作者:张浩 ; 郑云普 ; 叶嘉 ; 高伟 ; 乔雅君 ; 戴川景 ; 赵雨欣 ; 石少婕
  • 英文作者:ZHANG Hao;ZHENG Yun-pu;YE Jia;GAO Wei;QIAO Ya-jun;DAI Chuan-jing;ZHAO Yu-xin;SHI Shao-jie;School of Life Science and Engineering,Handan College;School of Water Conservancy and Hydropower,Hebei University of Engineering;Ecology and Environment Bureau of Xiong'an New District;
  • 关键词:外源钙离子 ; 盐胁迫 ; 光合作用 ; 气孔导度 ; 生物量
  • 英文关键词:exogenous Ca~(2+);;salt stress;;photosynthesis;;stomatal conductance;;biomass
  • 中文刊名:应用生态学报
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:邯郸学院生命科学与工程学院;河北工程大学水利水电学院;河北雄安新区生态环境局;
  • 出版日期:2019-01-16 13:59
  • 出版单位:应用生态学报
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划项目(2017YFD0300905)资助~~
  • 语种:中文;
  • 页:216-223
  • 页数:8
  • CN:21-1253/Q
  • ISSN:1001-9332
  • 分类号:S513;S156.4
摘要
探讨盐胁迫下玉米气孔特征、光合作用和生物量对外源钙离子的响应,有助于深入理解添加外源钙离子(Ca~(2+))缓解玉米盐胁迫的作用机理.以‘京科665’品种为试材,研究了NaCl胁迫下(100 mmol·L~(-1))添加不同浓度外源Ca~(2+)(0、5、10、20、40、80 mmol·L~(-1))对玉米幼苗气孔特征、光合作用和生物量的影响.结果表明:不同Ca~(2+)浓度对盐胁迫下玉米的气孔密度影响不大,但显著减小了气孔形状指数、气孔面积、气孔长度、气孔宽度和气孔周长.同时,随着外源Ca~(2+)浓度的逐渐提高,玉米叶片的净光合速率(P_n)呈先升高后降低的趋势,且气孔导度(g_s)和胞间CO_2浓度(C_i)均显著降低,表明不同浓度Ca~(2+)通过改变玉米气孔结构特征进一步限制光合作用过程,最终导致P_n降低.另外,外源Ca~(2+)促进盐胁迫下玉米幼苗生物量增加,但根冠比显著降低,表明盐胁迫下添加外源Ca~(2+)对地上部分的缓解作用大于地下部分.
        Understanding the responses of stomatal structure, photosynthesis and biomass of maize to exogenous Ca~(2+) addition under NaCl stress has important significance for further uncovering the alleviative mechanism of exogenous Ca~(2+ )on maize under salt stress. We examined the effects of exogenous Ca~(2+)(0, 5, 10, 20, 40, 80 mmol·L~(-1)) on the stomatal structure, photosynthesis and biomass of maize(Zea mays L. cv. Jingke 665) seedlings under NaCl stress(100 mmol·L~(-1)). Our results showed that exogenous Ca~(2+) addition had limited effect on stomatal density, but significantly decreased stomatal shape index, stomatal area, stomatal length, stomatal width, and stomatal cir-cumference. Meanwhile, the net photosynthetic rate(P_n) initially increased and then decreased with the increases of exogenous Ca~(2+) concentration, whereas both the stomatal conductance(g_s) and intercellular CO_2 concentration(C_i) were decreased, suggesting that the decrease of P_n was mainly due to stomatal limitation under high Ca~(2+) concentration. The biomass of maize seedlings was increased and the root/shoot ratio was decreased with the increases of exogenous Ca~(2+) concentration, suggested that the alleviated effect of exogenous Ca~(2+) on aboveground biomass was higher than that on belowground biomass of maize under salt stress.
引文
[1] Sun Y-F (孙玉芳), Niu L-C (牛丽纯), Song F-Q (宋福强). Progress on salinization soil restoration method. International Journal of Ecology (世界生态学), 2014(3): 30-36 (in Chinese)
    [2] Zhang H-F (张宏飞), Wang S-M (王锁民). Advances in study of Na+ uptake and transport in higher plants and Na+ homeostasis in the cell. Chinese Bulletin of Botany (植物学通报), 2007, 24(5): 561-571 (in Chinese)
    [3] Wang C-N (王春娜), Gong W-G (宫伟光). Review on saline land improvement. Protection Forest Science and Technology (防护林科技), 2004, 62(5): 38-42 (in Chinese)
    [4] Wang D-M (王东明), Jia Y (贾媛), Cui J-Z (崔继哲). Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity. Chinese Agricultural Science Bulletin (中国农学通报), 2009, 25(4): 124-128 (in Chinese)
    [5] Guo L-L (郭丽丽), Hao L-H (郝立华), Jia H-H (贾慧慧), et al. Effects of NaCl stress on stomatal traits, leaf gas exchange parameters, and biomass of two tomato cultivars. Chinese Journal of Applied Ecology (应用生态学报), 2018, 29(12): 3949-3958 (in Chinese)
    [6] Zhu J-F (朱金方), Liu J-T (刘京涛), Lu Z-H (陆兆华). Effects of salt stress on physiological characteristics of Tamarix chinensis Lour. seedlings. Acta Ecologica Sinica (生态学报), 2015, 35(15): 5140-5146 (in Chinese)
    [7] Wang X-D (王晓冬), Wang C (王成), Ma Z-H (马智宏). Effect of short-term salt stress on the absorption of K+ and accumulation of Na+, K + in seedlings of different wheat varieties. Acta Ecologica Sinica (生态学报), 2011, 31(10): 2822-2830 (in Chinese)
    [8] Zhang H (张浩), Guo L-L (郭丽丽), Ye J (叶嘉), et al. Responses of leaf stomatal traits and gas exchange process of cherry tomato to NaCl salinity stress. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 2018, 34(5): 107-113 (in Chinese)
    [9] Haworth M, Heath J, Mcelwain JC. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Annals of Botany, 2010, 105: 411-418
    [10] Jiang X-Y (江行玉), Dou J-X (窦君霞), Wang Z-Q (王正秋). Comparison of regulations of NaCl for photosynthesis and osmotic adjustment ability of maize and cotton. Plant Physiology Communications (植物生理学通讯), 2001, 37(4): 303-305 (in Chinese)
    [11] Zhang C-H (张川红), Yin W-L (尹伟伦), Shen Y-B (沈应柏). Effect of salinity on stomata in pagoda tree and walnut seedlings. Journal of Beijing Forestry University (北京林业大学学报), 2002, 24(2): 1-5 (in Chinese)
    [12] Woodward FI. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature, 1987, 327: 617-618
    [13] Zhu Y (朱玉), Hao L-H (郝立华), Huang L (黄磊), et al. Effects of temperature on leaf stomatal traits and gas exchange of three north highbush blueberry varieties. Journal of China Agricultural University (中国农业大学学报), 2016, 21(7): 43-52 (in Chinese)
    [14] Zhang F (张芬), Zhang B (张波), Tian L-P (田丽萍), et al. Effects of salt stress on photosynthetic characteristic and the content of chlorophyll and β-carotene in tomatoes seedling leaves. Northern Horticulture (北方园艺), 2014, 38(11): 15-20 (in Chinese)
    [15] Jin Y-Q (金雅琴), Li D-L (李冬林), Ding Y-L (丁雨龙), et al. Effects of salt stress on photosynthetic characteristics and chlorophyll content of Sapium sebiferum seedlings. Journal of Nanjing Forestry University (Natural Science) (南京林业大学学报:自然科学版), 2011, 35(1): 29-33 (in Chinese)
    [16] Gao W (高巍), Shang Z-L (尚忠林). Role of cytosolic ions in stomatal movement. Chinese Bulletin of Botany (植物学报), 2010, 45(5): 632-639 (in Chinese)
    [17] Qi H-Y (齐红岩), Wang D (王丹), Qi M-F (齐明芳), et al. Regulation of different calcium forms on the photosynthesis of tomato leaves under heat stress. Chinese Journal of Applied Ecology (应用生态学报), 2014, 25(12): 3540-3546 (in Chinese)
    [18] Zhao S-Z (赵素贞), Hong H-L (洪华龙), Yan C-L (严重玲). Effect of calcium supply on photosynthesis and ultrastructure of cells of Kandelia obovata (S.L.) Yong under calcium stress. Journal of Xiamen University (Natural Science) (厦门大学学报:自然科学版), 2014, 53(6): 875-882 (in Chinese)
    [19] Zhu X-J (朱晓军), Yang J-S (杨劲松), Liang Y-C (梁永超), et al. Effects of exogenous calcium on photosynthesis and its related physiological characteristics of rice seedlings under salt stress. Scientia Agricultura Sinica (中国农业科学), 2004, 37(10): 1497-1503 (in Chinese)
    [20] Yan B (严蓓), Sun J (孙锦), Shu S (束胜), et al. Effects of exogenous calcium on photosynthetic characteristics and carbohydrate metabolism in leaves of cucumber (Cucumis sativus L.) seedlings under NaCl stress. Journal of Nanjing Agricultural University (南京农业大学学报), 2014, 37(1): 31-36 (in Chinese)
    [21] Zheng Y-P (郑云普), Xu M (徐明), Wang J-S (王建书), et al. Responses of the stomatal traits and gas exchange of maize leaves to climate warming. Acta Agronomica Sinica (作物学报), 2015, 41(4): 601-612 (in Chinese)
    [22] Zheng YP, Xu M, Hou RX, et al. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecology and Evolution, 2013, 3: 3095-3111
    [23] Larkin JC, Marks MD, Nadeau J, et al. Epidermal cell fate and patterning in leaves. Plant Cell, 1997, 9: 1109-1120
    [24] Gan Y, Zhou L, Shen ZJ, et al. Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Botanical Studies, 2010, 51: 325-336
    [25] Xu ZZ, Zhou GS. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant and Soil, 2005, 269: 131-139
    [26] Zhu Y (朱玉), Huang L (黄磊), Zheng Y-P (郑云普), et al. Effects of high temperatures on leaf stomatal traits and gas exchanges of highbush blueberries. Journal of Fruit Science (果树学报), 2016, 33(4): 444-456 (in Chinese)
    [27] Feng Q-H (冯秋红), Shi Z-M (史作民), Dong L-L (董莉莉). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae (林业科学), 2008, 44(4): 125-131 (in Chinese)
    [28] Yan H-X (闫海霞), Fang L-B (方路斌), Huang D-Z (黄大庄). Effects of drought stress on the biomass distribution and photosynthetic characteristics of cluster mulberry. Chinese Journal of Applied Ecology (应用生态学报), 2011, 22(12): 3360-3365 (in Chinese)
    [29] Cheng Y-J (程玉静), Guo S-R (郭世荣), Shu S (束胜), et al. Effects of exogenous Ca(NO3)2 on growth and photosynthesis of cucumber seedlings under salt stress. Acta Agriculturae Jiangxi (江西农业学报), 2012, 24(4): 38-41 (in Chinese)
    [30] Zhang Z-X (张振兴), Sun J (孙锦), Guo S-R (郭世荣), et al. Effect of supplementary calcium on the growth and the content and components of soluble protein of watermelon seedlings under salt stress. Journal of Nanjing Agricultural University (南京农业大学学报), 2011, 34(5): 20-24 (in Chinese)
    [31] Zheng X-F (郑秀芳), Zhang C-Q (张超强). Effects of exogenous Ca(NO3)2 on growth and physiological characteristics of potato test-tube seedings under salt stress. Acta Agriculturae Boreali-Occidentalis Sinica (西北农业学报), 2015, 24(6): 97-102 (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700