用户名: 密码: 验证码:
基因工程功能化丝蛋白生物材料及其在生物医学中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Functionalized genetic engineered silk-based biomaterials and their applications
  • 作者:张蕾 ; 向仲怀 ; 赵盖超 ; 吴宗辉 ; 崔红娟
  • 英文作者:Lei Zhang;Zhonghuai Xiang;Gaichao Zhao;Zonghui Wu;Hongjuan Cui;State Key Laboratory of Silkworm Genome Biology, Southwest University;Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine;Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University;Hospital of Southwest University, Southwest University;
  • 关键词:丝蛋白 ; 生物材料 ; 功能化 ; 基因工程 ; 生物医学
  • 英文关键词:silk protein;;biomaterials;;functionalization;;genetic engineering;;biomedicine
  • 中文刊名:生物工程学报
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:西南大学家蚕基因组生物学国家重点实验室;重庆市蚕丝生物材料与再生医学工程研究中心;西南大学肿瘤生物医学与转化工程研究中心;西南大学西南大学医院;
  • 出版日期:2019-01-09 11:26
  • 出版单位:生物工程学报
  • 年:2019
  • 期:06
  • 基金:中央高校基本科研业务费(No.XDJK2018C010)资助~~
  • 语种:中文;
  • 页:41-56
  • 页数:16
  • CN:11-1998/Q
  • ISSN:1000-3061
  • 分类号:R318.08
摘要
丝蛋白生物材料具有优异的力学性能、良好的生物相容性及可降解性,在生物医学领域具有巨大的应用潜力。现有丝蛋白生物材料在结构和功能方面的相关知识,为设计合成新型丝蛋白生物材料提供了理论基础。此外,利用基因工程技术可将编码新肽或结构域的基因序列添加到编码丝蛋白的基因序列中,以获得具有新功能的丝蛋白生物材料,并更好地满足现代生物医学的需求。文中总结了基因工程功能化的丝蛋白生物材料在生物医学领域中的应用现状和发展前景。
        Silk-based biomaterials are featured with excellent mechanical properties, good biocompatibility and biodegradability, which contribute to their potential applications in biomedical field. The current recognition of silk protein materials in structure and function provides a basic theory for the transformation of silk protein into new types of biomaterials.In addition, exogenous sequences encoding new peptide or structural domain can be inserted into the maternal gene sequences encoding silk proteins through genetic engineering technology to synthesize novel silk-based biomaterials with unique functions. This review summarizes the current trend and development perspective of genetically engineered functional silk-based materials for biomedical applications.
引文
[1]Shao ZZ,Vollrath F.Materials:surprising strength of silkworm silk.Nature,2002,418(6899):741-741.
    [2]Altman GH,Diaz F,Jakuba C,et al.Silk-based biomaterials.Biomaterials,2003,24(3):401-416.
    [3]Kluge JA,Rabotyagova O,Leisk GG,et al.Spider silks and their applications.Trends Biotechnol,2008,26(5):244-251.
    [4]Nileb?ck L,Hedin J,Widhe M,et al.Self-assembly of recombinant silk as a strategy for chemical-free formation of bioactive coatings:a real-time study.Biomacromolecules,2017,18(3):846-854.
    [5]Vendrely C,Scheibel T.Biotechnological production of spider-silk proteins enables new applications.Macromol Biosci,2007,7(4):401-409.
    [6]Schacht K,Scheibel T.Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications.Curr Opin Biotechnol,2014,29:62-69.
    [7]Numata K,Kaplan DL.Silk-based delivery systems of bioactive molecules.Adv Drug Deliv Rev,2010,62(15):1497-1508.
    [8]Du WH,Zhao TF,Zhu Y.Advances in genetic engineering of spider silk proteins.Sci Sericul,2011,37(05):892-898(in Chinese).杜文华,赵天福,朱勇.蜘蛛丝蛋白基因工程的研究进展.蚕业科学,2011,37(05):892-898.
    [9]Wray LS,Hu X,Gallego J,et al.Effect of processing on silk-based biomaterials:reproducibility and biocompatibility.J Biomed Mater Res B Appl Biomater,2011,99(1):89-101.
    [10]Wang JH,Wang SJ,Xia JH,et al.Review on methods for silk modification.Chin J Chem Edu,2018,39(10):1-4(in Chinese).王嘉禾,王淑娟,夏嘉豪,等.蚕丝改性方法概述.化学教育,2018,39(10):1-4.
    [11]Deptuch T,Dams-Kozlowska H.Silk materials functionalized via genetic engineering for biomedical applications.Materials,2017,10(12):1417.
    [12]Tokareva O,Jacobsen M,Buehler M,et al.Structure-function-property-design interplay in biopolymers:spider silk.Acta Biomater,2014,10(4):1612-1626.
    [13]Pan HC,Song DX,Zhou KY,et al.Cloning and prokaryotic expression of major ampullate spidroin gene of spider.Chin J Biotech,2007,23(3):446-451(in Chinese).潘红春,宋大祥,周开亚,等.蜘蛛大壶状腺丝蛋白基因的克隆和原核表达.生物工程学报,2007,23(3):446-451.
    [14]Lewis RV.Spider silk:ancient ideas for new biomaterials.Chem Rev,2006,106(9):3762-3774.
    [15]Xu M,Lewis RV.Structure of a protein superfiber:spider dragline silk.Proc Natl Acad Sci USA,1990,87(18):7120-7124.
    [16]Gaines WA,Sehorn MG,Marcotte WR Jr.Spidroin n-terminal domain promotes a ph-dependent association of silk proteins during self-assembly.JBiol Chem,2010,285(52):40745-40753.
    [17]Ittah S,Cohen S,Garty S,et al.An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation.Biomacromolecules,2006,7(6):1790-1795.
    [18]Qi Y,Wang H,Wei K,et al.A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures.Int J Mol Sci,2017,18(3):237.
    [19]Arcidiacono S,Mello C,Kaplan D,et al.Purification and characterization of recombinant spider silk expressed in Escherichia coli.Appl Microbiol Biotechnol,1998,49(1):31-38.
    [20]Lewis RV,Hinman M,Kothakota S,et al.Expression and purification of a spider silk protein:a new strategy for producing repetitive proteins.Protein Expr Purif,1996,7(4):400-406.
    [21]Tokareva O,Michalczechen-Lacerda VA,Rech EL,et al.Recombinant DNA production of spider silk proteins.Microb Biotechnol,2013,6(6):651-663.
    [22]Scheller J,Gührs KH,Grosse F,et al.Production of spider silk proteins in tobacco and potato.Nat Biotechnol,2001,19(6):573-577.
    [23]Lazaris A,Arcidiacono S,Huang Y,et al.Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.Science,2002,295(5554):472-476.
    [24]Kuwana Y,Sezutsu H,Nakajima K,et al.High-toughness silk produced by a transgenic silkworm expressing spider(Araneus ventricosus)dragline silk protein.PLoS ONE,2014,9(8):e105325.
    [25]Fahnestock SR,Bedzyk LA.Production of synthetic spider dragline silk protein in Pichia pastoris.Appl Microbiol Biotechnol,1997,47(1):33-39.
    [26]Heidebrecht A,Scheibel T.Recombinant production of spider silk proteins.Adv Appl Microbiol,2013,82:115-153.
    [27]Williams D.Sows’ears,silk purses and goats’milk:new production methods and medical applications for silk.Med Device Technol,2003,14(5):9-11.
    [28]Xia XX,Qian ZG,Ki CS,et al.Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.Proc Natl Acad Sci USA,2010,107(32):14059-14063.
    [29]Dinjaski N,Kaplan DL.Recombinant protein blends:silk beyond natural design.Curr Opin Biotechnol,2016,39:1-7.
    [30]Sutherland TD,Campbell PM,Weisman S,et al.Ahighly divergent gene cluster in honey bees encodes a novel silk family.Genome Res,2006,16(11):1414-1421.
    [31]Sezutsu H,Kajiwara H,Kojima K,et al.Identification of four major hornet silk genes with a complex of alanine-rich and serine-rich sequences in Vespa simillima xanthoptera cameron.Biosci Biotechnol Biochem,2007,71(11):2725-2734.
    [32]Shi JH,Lua SX,Du N,et al.Identification,recombinant production and structural characterization of four silk proteins from the asiatic honeybee Apis cerana.Biomaterials,2008,29(18):2820-2828.
    [33]Weisman S,Haritos VS,Church JS,et al.Honeybee silk:recombinant protein production,assembly and fiber spinning.Biomaterials,2010,31(9):2695-2700.
    [34]Sutherland TD,Church JS,Hu XA,et al.Single honeybee silk protein mimics properties of multi-protein silk.PLoS ONE,2011,6(2):e16489.
    [35]Krishnaji ST,Bratzel G,Kinahan ME,et al.Sequence-structure-property relationships of recombinant spider silk proteins:integration of biopolymer design,processing,and modeling.Adv Funct Mater,2013,23(2):241-253.
    [36]Tokareva OS,Lin SC,Jacobsen MM,et al.Effect of sequence features on assembly of spider silk block copolymers.J Struct Biol,2014,186(3):412-419.
    [37]Jastrzebska K,Felcyn E,Kozak M,et al.The method of purifying bioengineered spider silk determines the silk sphere properties.Sci Rep,2016,6:28106.
    [38]Lin SC,Ryu S,Tokareva O,et al.Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres.Nat Commun,2015,6:6892.
    [39]Huang WW,Ebrahimi D,Dinjaski N,et al.Synergistic integration of experimental and simulation approaches for the de novo design of silk-based materials.Acc Chem Res,2017,50(4):866-876.
    [40]Szela S,Avtges P,Valluzzi R,et al.Reduction-oxidation control ofβ-sheet assembly in genetically engineered silk.Biomacromolecules,2000,1(4):534-542.
    [41]Coburn JM,Na E,Kaplan DL.Modulation of vincristine and doxorubicin binding and release from silk films.J Control Release,2015,220:229-238.
    [42]Seib FP,Kaplan DL.Doxorubicin-loaded silk films:drug-silk interactions and in vivo performance in human orthotopic breast cancer.Biomaterials,2012,33(33):8442-8450.
    [43]Numata K,Cebe P,Kaplan DL.Mechanism of enzymatic degradation of beta-sheet crystals.Biomaterials,2010,31(10):2926-2933.
    [44]Brown J,Lu CL,Coburn J,et al.Impact of silk biomaterial structure on proteolysis.Acta Biomater,2015,11:212-221.
    [45]Elsner MB,Herold HM,Müller-Herrmann S,et al.Enhanced cellular uptake of engineered spider silk particles.Biomater Sci,2015,3(3):543-551.
    [46]Spie?K,Wohlrab S,Scheibel T.Structural characterization and functionalization of engineered spider silk films.Soft Matter,2010,6(17):4168-4174.
    [47]Kronqvist N,Sarr M,Lindqvist A,et al.Efficient protein production inspired by how spiders make silk.Nat Commun,2017,8:15504.
    [48]Numata K,Kaplan DL.Silk-based gene carriers with cell membrane destabilizing peptides.Biomacromolecules,2010,11(11):3189-3195.
    [49]Kozlowska AK,Florczak A,Smialek M,et al.Functionalized bioengineered spider silk spheres improve nuclease resistance and activity of oligonucleotide therapeutics providing a strategy for cancer treatment.Acta Biomater,2017,59:221-233.
    [50]Florczak A,Mackiewicz A,Dams-Kozlowska H.Functionalized spider silk spheres as drug carriers for targeted cancer therapy.Biomacromolecules,2014,15(8):2971-2981.
    [51]Seib FP,Jones GT,Rnjak-Kovacina J,et al.pH-dependent anticancer drug release from silk nanoparticles.Adv Healthc Mater,2013,2(12):1606-1611.
    [52]Chen MJ,Shao ZZ,Chen X.Paclitaxel-loaded silk fibroin nanospheres.J Biomed Mater Res A,2012,100A(1):203-210.
    [53]Gupta V,Aseh A,Ríos CN,et al.Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy.Int J Nanomedicine,2009,4:115-122.
    [54]Qu J,Liu Y,Yu YN,et al.Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin.Mater Sci Eng C Mater Biol Appl,2014,44:166-174.
    [55]Numata K,Subramanian B,Currie HA,et al.Bioengineered silk protein-based gene delivery systems.Biomaterials,2009,30(29):5775-5784.
    [56]Vannucci L,Lai M,Chiuppesi F,et al.Viral vectors:a look back and ahead on gene transfer technology.New Microbiol,2013,36(1):1-22.
    [57]Ruan CR,Huang JX,Wei MH,et al.Construction,fermentation and purification of high polymer spider dragline silk protein containing RGD peptide.Chin JBiotech,2007,23(5):858-861(in Chinese).阮超然,黄晶星,魏梅红,等.高分子量RGD-蛛丝蛋白重组体的构建、高密度发酵及纯化.生物工程学报,2007,23(5):858-861.
    [58]Numata K,Mieszawska-Czajkowska AJ,Kvenvold LA,et al.Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery.Macromol Biosci,2012,12(1):75-82.
    [59]Laakkonen P,Vuorinen K.Homing peptides as targeted delivery vehicles.Integr Biol,2010,2(7/8):326-337.
    [60]Hoffman JA,Giraudo E,Singh M,et al.Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma.Cancer Cell,2003,4(5):383-391.
    [61]Numata K,Reagan MR,Goldstein RH,et al.Spider silk-based gene carriers for tumor cell-specific delivery.Bioconjug Chem,2011,22(8):1605-1610.
    [62]Porkka K,Laakkonen P,Hoffman JA,et al.Afragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo.Proc Natl Acad Sci USA,2002,99(11):7444-7449.
    [63]Florczak A,Jastrzebska K,Mackiewicz A,et al.Blending two bioengineered spider silks to develop cancer targeting spheres.J Mater Chem B,2017,5(16):3000-3011.
    [64]Witton CJ,Reeves JR,Going JJ,et al.Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer.J Pathol,2003,200(3):290-297.
    [65]Wohlrab S,Müller S,Schmidt A,et al.Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins.Biomaterials,2012,33(28):6650-6659.
    [66]Widhe M,Johansson U,Hillerdahl CO,et al.Recombinant spider silk with cell binding motifs for specific adherence of cells.Biomaterials,2013,34(33):8223-8234.
    [67]Johansson U,Ria M,?vall K,et al.Pancreatic islet survival and engraftment is promoted by culture on functionalized spider silk matrices.PLoS ONE,2015,10(6):e0130169.
    [68]Asakura T,Isozaki M,Saotome T,et al.Recombinant silk fibroin incorporated cell-adhesive sequences produced by transgenic silkworm as a possible candidate for use in vascular graft.J Mater Chem B,2014,2(42):7375-7383.
    [69]Widhe M,Shalaly ND,Hedhammar M.A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices.Biomaterials,2016,74:256-266.
    [70]Gomes SC,Leonor IB,Mano JF,et al.Antimicrobial functionalized genetically engineered spider silk.Biomaterials,2011,32(18):4255-4266.
    [71]Senior L,Crump MP,Williams C,et al.Structure and function of the silicifying peptide R5.J Mater Chem B,2015,3(13):2607-2614.
    [72]Zhou S,Huang WW,Belton DJ,et al.Control of silicification by genetically engineered fusion proteins:silk-silica binding peptides.Acta Biomater,2015,15:173-180.
    [73]Mieszawska AJ,Nadkarni LD,Perry CC,et al.Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration.Chem Mater,2010,22(20):5780-5785.
    [74]Dinjaski N,Plowright R,Zhou S,et al.Osteoinductive recombinant silk fusion proteins for bone regeneration.Acta Biomater,2017,49:127-139.
    [75]Currie HA,Deschaume O,Naik RR,et al.Genetically engineered chimeric silk-silver binding proteins.Adv Funct Mater,2011,21(15):2889-2895.
    [76]Krishnaji ST,Kaplan DL.Bioengineered chimeric spider silk-uranium binding proteins.Macromol Biosci,2013,13(2):256-264.
    [77]Pardoux R,Sauge-Merle S,Lemaire D,et al.Modulating uranium binding affinity in engineered calmodulin EF-hand peptides:effect of phosphorylation.PLoS ONE,2012,7(8):e41922.
    [78]Huang WW,Rollett A,Kaplan DL.Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.Expert Opin Drug Deliv,2015,12(5):779-791.
    [79]Nagarsekar A,Crissman J,Crissman M,et al.Genetic synthesis and characterization of pH-and temperature-sensitive silk-elastinlike protein block copolymers.J Biomed Mater Res,2002,62(2):195-203.
    [80]Wang Q,Xia XX,Huang WW,et al.High throughput screening of dynamic silk-elastin-like protein biomaterials.Adv Funct Mater,2014,24(27):4303-4310.
    [81]Xia XX,Xu QB,Hu X,et al.Tunable self-assembly of genetically engineered silk-elastin-like protein polymers.Biomacromolecules,2011,12(11):3844-3850.
    [82]Gustafson JA,Ghandehari H.Silk-elastinlike protein polymers for matrix-mediated cancer gene therapy.Adv Drug Deliv Rev,2010,62(15):1509-1523.
    [83]Yang MY,Tanaka C,Yamauchi K,et al.Silklike materials constructed from sequences of Bombyx mori silk fibroin,fibronectin,and elastin.J Biomed Mater Res A,2008,84(2):353-363.
    [84]Qiu WG,Huang YD,Teng WB,et al.Complete recombinant silk-elastinlike protein-based tissue scaffold.Biomacromolecules,2010,11(12):3219-3227.
    [85]Shi P,Gustafson JA,MacKay JA.Genetically engineered nanocarriers for drug delivery.Int JNanomedicine,2014,9:1617-1626.
    [86]W?odarczyk-Biegun MK,Werten MWT,de Wolf FA,et al.Genetically engineered silk-collagen-like copolymer for biomedical applications:production,characterization and evaluation of cellular response.Acta Biomater,2014,10(8):3620-3629.
    [87]Huang J,Wong C,George A,et al.The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation.Biomaterials,2007,28(14):2358-2367.
    [88]Gomes S,Leonor IB,Mano JF,et al.Spider silk-bone sialoprotein fusion proteins for bone tissue engineering.Soft Matter,2011,7(10):4964-4973.
    [89]Mizuno M,Imai T,Fujisawa R,et al.Bone sialoprotein(BSP)is a crucial factor for the expression of osteoblastic phenotypes of bone marrow cells cultured on type I collagen matrix.Calcif Tissue Int,2000,66(5):388-396.
    [90]Jansson R,Thatikonda N,Lindberg D,et al.Recombinant spider silk genetically functionalized with affinity domains.Biomacromolecules,2014,15(5):1696-1706.
    [91]Thatikonda N,Delfani P,Jansson R,et al.Genetic fusion of single-chain variable fragments to partial spider silk improves target detection in micro-and nanoarrays.Biotechnol J,2016,11(3):437-448.
    [92]Jansson R,Courtin CM,Sandgren M,et al.Rational design of spider silk materials genetically fused with an enzyme.Adv Funct Mater,2015,25(33):5343-5352.
    [93]Meirovitch S,Shtein Z,Ben-Shalom T,et al.Spider silk-CBD-cellulose nanocrystal composites:mechanism of assembly.Int J Mol Sci,2016,17(9):1573.
    [94]Jastrzebska K,Kucharczyk K,Florczak A,et al.Silk as an innovative biomaterial for cancer therapy.Rep Pract Oncol Radiother,2015,20(2):87-98.
    [95]Gomes S,Leonor IB,Mano JF,et al.Natural and genetically engineered proteins for tissue engineering.Prog Polym Sci,2012,37(1):1-17.
    [96]Zhang W,Chen LK,Chen JL,et al.Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial.Adv Healthc Mater,2017,6(10):1700121.
    [97]Shtatland T,Guettler D,Kossodo M,et al.PepBanka database of peptides based on sequence text mining and public peptide data sources.BMCBioinformatics,2007,8:280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700