用户名: 密码: 验证码:
胶州湾秋季文石饱和度分布及控制因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Surface Distribution of Aragonite Saturation State and Its Control Factors in the Jiaozhou Bay During the Fall
  • 作者:李劳钰 ; 孙霞 ; 王宗兴 ; 辛明 ; 韦钦胜 ; 高立宝 ; 薛亮
  • 英文作者:LI Lao-yu;SUN Xia;WANG Zong-xing;XIN Ming;WEI Qin-sheng;GAO Li-bao;XUE Liang;First Institute of Oceanography,MNR;Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology (Qingdao);Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao);
  • 关键词:文石饱和度 ; 陆源输入 ; 海洋酸化 ; 胶州湾
  • 英文关键词:aragonite saturation state;;terrestrial input;;ocean acidification;;Jiaozhou Bay
  • 中文刊名:海洋科学进展
  • 英文刊名:Advances in Marine Science
  • 机构:自然资源部第一海洋研究所;青岛海洋科学与技术试点国家实验室区域海洋动力学与数值模拟功能实验室;青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室;
  • 出版日期:2019-04-15
  • 出版单位:海洋科学进展
  • 年:2019
  • 期:02
  • 基金:中央级公益性科研院所基本科研业务费专项资金资助项目——富营养化海域生物过程对碳酸钙饱和度的影响:以胶州湾为例(2016Q01);; 束星北青年学者基金之南极重点海域的关键海洋动力过程研究(2018S02);; 青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室开放基金项目——夏季黄海冷水团锋面系统的生物地球化学作用及机制研究(LMEES201808)
  • 语种:中文;
  • 页:159-168
  • 页数:10
  • CN:37-1387/P
  • ISSN:1671-6647
  • 分类号:P734
摘要
基于2017-10-18航次在胶州湾调查获取的水文、碳化学和叶绿素a(Chl a)等数据与资料,分析了秋季该海域文石饱和度(Ω_(arag(现场)))的分布状况,探讨了影响其空间分布的主要控制因素。结果显示,秋季航次期间胶州湾表层Ω_(arag(现场))为1.85~2.57,平均值为(2.20±0.24);其分布具有较大的空间差异,低值位于湾的西部和东北部(<2.05),高值位于湾口(>2.45),总体上呈现出由湾口向湾顶逐步降低的趋势。除了通过分析Ω_(arag(现场))与温度、盐度和Chl a的相关性来定性确定Ω_(arag(现场))的主控因素外,我们还通过引入总碱度与溶解无机碳的差值作为Ω_(arag(现场))的指征参数,定量确定了影响Ω_(arag(现场))空间分布的主要过程及其贡献。研究发现,陆源输入是影响胶州湾秋季Ω_(arag(现场))空间分布的最重要因素(>50%),而温度和生物过程的影响相对较小。
        Surface distribution of aragonite saturation state(Ω_(arag(in situ))) in the Jiaozhou Bay during the fall was reported based on hydrology, carbonate chemistry and chlorophyll a data collected in the cruise on 2017-10-18. Results show that the surface Ω_(arag(in situ)) ranged from 1.85 to 2.57, with an average of(2.20 ± 0.24). Ω_(arag(in situ)) showed a large spatial variability, with low values of < 2.05 in the western and northeastern parts of the bay and high values of >2.45 in the mouth of the bay, demonstrating a feature of decreasing from the mouth to the top of the bay. In addition to a correlation analysis(qualitative analysis)of Ω_(arag(in situ)) with sea surface temperature, salinity and chlorophyll a to determine the major factor, a quantitative analysis was conducted via introducing the difference between total alkalinity and dissolved inorganic carbon(TA—DIC) as a indicated parameter of Ω_(arag(in situ)) to identify the main processes and contributions for spatial distribution of Ω_(arag(in situ)). Our results indicate that terrestrial input is the most important factor for spatial distribution of Ω_(arag(in situ))(> 50%) in Jiaozhou Bay in the fall, while the contributions of temperature and biological processes are relatively minor.
引文
[1] BARTON A,WALDBUSSER G G,FEELY R A,et al.Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response[J].Oceanography,2015,28:146-159.
    [2] GUINOTTE J M,FABRY V J.Ocean acidification and its potential effects on marine ecosystems[J].Annals of the New York Academy of Sciences,2008,1134(1):320-342.
    [3] XU D,WANG D S,LI B,et al.Effects of CO2 and seawater acidification on the early stages of saccharina japonica development[J].Environmental Science & Technology,2015,49(6):3548-3556.
    [4] ALBRIGHT R,TAKESHITA Y,KOWEEK D A,et al.Carbon dioxide addition to coral reef waters suppresses net community calcification.[J].Nature,2018,DOI:10.1038/nature25968.
    [5] ORR J C,FABRY V J,AUMONT O,et al.Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J].Nature,2005,437(7059):681-686.
    [6] XUE L,CAI W J,TAKAHASHI T,et al.Climatic modulation of surface acidification rates through summertime wind forcing in the Southern Ocean[J].Nature Communications,2018,DOI:10.1038/s41467-018-05443-7.
    [7] CAI W J,HU X,HUANG W,et al.Acidification of subsurface coastal waters enhanced by eutrophication[J].Nature Geoscience,2011,DOI:10.1038/ngeo1297.
    [8] FEELY R A,SABINE C L,HERNANDEZ-AYON J M,et al.Evidence for upwelling of corrosive "acidified" water onto the continental shelf[J].Science,2008,320(5882):1490-1492.
    [9] QI D,CHEN L Q,CHEN B S,et al.Increase in acidifying water in the western Arctic Ocean[J].Nature Climate Change,2017,7(3):195-199.
    [10] SALISBURY J,GREEN M,HUNT C,et al.Coastal acidification by rivers:a new threat to shellfish[N].Eos,Transactions,American Geophysical Union,2008,89(50):513-514.
    [11] WALLACE R B,BAUMANN H,GREAR J S,et al.Coastal ocean acidification:the other eutrophication problem[J].Estuarine,Coastal and Shelf Science,2014,148:1-13.
    [12] YANG X F,XUE L,LI Y X,et al.Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans[J].Environmental Science & Technology,2018,52:5590-5599.
    [13] WANG G Z,JING W P,WANG S L,et al.Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system[J].Environmental Science &Technology,2014,48(22):13069-13075.
    [14] DUARTE C M,HENDRIKS I E,MOORE T S,et al.Is ocean acidification an open-ocean syndrome?Understanding anthropogenic impacts on seawater pH[J].Estuaries and Coasts,2013,36(2):221-236.
    [15] RAVEN J,CALDEIRA K,ELDERFIELD H,et al.Ocean acidification due to increasing atmospheric carbon dioxide[M].London:The Royal Society,2005.
    [16] RIEBESELL U.Effects of CO2 enrichment on marine phytoplankton[J].Journal of Oceanography,2004,60(4):719-729.
    [17] WALDBUSSER G G,HALES B,LANGDON C J,et al.Saturation-state sensitivity of marine bivalve larvae to ocean acidification[J].Nature Climate Change,2014,5:273-280.Doi:10.1038/NCLIMATE2479.
    [18] WU Z X,YU Z M,SONG X X,et al.A new system of eutrophication assessment for both water quality and ecological response:a case study in typical areas off Shandong Peninsula[J].Oceanologia et Limnologia Sinica,2014,45(1):20-31.吴在兴,俞志明,宋秀贤,等.基于水质状态和生态响应的综合富营养化评价模型-以山东半岛典型海域富营养化评价为例[J].海洋与湖沼,2014,45(1):20-31.
    [19] SUN P X,WANG Z L,ZHAN R,et al.Study on dissolved inorganic nitrogen distributionsand eutrophication in the Jiaozhou Bay[J].Advances in Marine Science,2005,23(4):466-471.孙丕喜,王宗灵,战闰,等.胶州湾海水中无机氮的分布与富营养化研究[J].海洋科学进展,2006,23(4):466-471.
    [20] NIU Q S,QI L.Analysis of main pollutant sources affecting seawater qualityin the Jiaozhou Bay - area assessment of present water quality in the Licun River and its main tributaries[J].Coastal Engineering,2006,25(3):50-59.牛青山,亓靓.影响胶州湾海域海水水质的主要污染源分析-李村河及其主要支流流域水质现状评价[J].海岸工程,2006,25(3):50-59.
    [21] GAO Z H,YANG D L,QIN J,et al.The land-sourced pollution in the Jiaozhou Bay[J].Chinese Journal of Oceanology and Limnology,2008,26(2):229-232.
    [22] LI Y X,YANG X F,HAN P,et al.Controlling mechanisms of surface partial pressure of CO2 in Jiaozhou Bay during summer and the influence of heavy rain[J].Journal of Marine Systems,2017,173:49-59.
    [23] HAN P,LI Y X,YANG X F,et al.Effects of aerobic respiration and nitrification on dissolved inorganic nitrogen and carbon dioxide in human-perturbed eastern Jiaozhou Bay,China[J].Marine Pollution Bulletin,2017,124(1):449-458.
    [24] LI X G,SONG J M,NIU L F,et al.Role of the Jiaozhou Bay as a source/sink of CO2 over a seasonal cycle[J].Scientia Marina,2007,71(3):441-450.
    [25] LI X G,LI N,GAO X L,et al.Dissolved inorganic carbon and CO2 fluxes across Jiaozhou Bay air-water interface[J].Acta Oceanologica Sinica,2004,23(2):279-285.
    [26] ZHANG L J,XUE M,LIU Q Z.Distribution and seasonal variation in the partial pressure of CO2 during autumn and winter in Jiaozhou Bay,a region of high urbanization[J].Marine Pollution Bulletin,2012,64:56-65.
    [27] DENG X,HU Y B,LIU C Y,et al.Distributions and seasonal variations of carbonate system in the Jiaozhou Bay,China[J].Oceanologia et Limnologia Sinica,2016,47(1):234-244.邓雪,胡玉斌,刘春颖,等.胶州湾表层海水碳酸盐体系的季节变化[J].海洋与湖沼,2016,47(1):234-244.
    [28] GONG X B,HAN P,ZHANG L J,et al.Distribution and controlling factors of sea surface partial pressure of CO2 in Jiaozhou Bay during April[J].Periodical of Ocean University of China,2015,45(4):95-102.龚信宝,韩萍,张龙军,等.胶州湾春季4月份表层海水pCO2分布及控制因素分析[J].中国海洋大学学报(自然科学版),2015,45(4):95-102.
    [29] LIU H,JI H W,XIN M.The carbon dioxide system in Jiaozhou Bay[J].Marine Sciences,1998,22(6):44-47.刘辉,姬泓巍,辛梅.胶州湾水体中的二氧化碳体系[J].海洋科学,1998,22(6):44-47.
    [30] SHEN Z L,LIU M X.Study on CO2 sytem in Jiaozhou Bay[J].Haiyang Xuebao,1997,19(2):115-120.沈志良,刘明星.胶州湾海水中二氧化碳的研究[J].海洋学报,1997,19(2):115-120.
    [31] ZANG H,LI Y X,XUE L,et al.The contribution of low temperature and biological activities to the CO2 sink in Jiaozhou Bay during winter[J].Journal of Marine Systems,2018,186:37-46.
    [32] MUCCI A.The solubility of calcite and aragonite in seawater at various salinities,temperatures,and one atmosphere total pressure[J].American Journal of Science,1983,283(7):780-799.
    [33] LEWIS E,WALLACE D W R.Program developed for CO2 systems calculations(ORNL/CDIAC-105)[DB/CD].Oak Ridge,Tennessee:Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,US Department of Energy,1998.
    [34] PIERROT D E L,WALLACE D W R.MS excel program developed for CO2 system calculations (ORNL/CDIAC-105)[DB/CD].Oak Ridge,Tennessee:Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,U.S.Department of Energy,doi:10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a,2006.
    [35] DICKSON A,SABINE C,CHRISTIAN J R.Guide to best practices for ocean CO2 measurements[R]//PICES Special Publication 3.British Columbia,Canada:North Pacific Marine Science Organization,2007.
    [36] XUE L,WANG H W,JIANG L Q,et al.Aragonite saturation state in a monsoonal upwelling system off Java,Indonesia[J].Journal of Marine Systems,2016,153:10-17.
    [37] National Technical Committee of Ocean Standardization.The specification for marine monitoring:Part 7 Ecological survey for offshore pollution and biological monitoring:GB 17378.4—2007[S].Beijing:China Ocean Press,2007:1-169.全国海洋标准化技术委员会.海洋监测规范:第7部分近海污染生态调查与生物监测:GB 17378.4—2007[S].北京:中国标准出版社,2007:1-169.
    [38] RILEY J P,TONGUDAI M.The major cation/chlorinity ratios in sea water[J].Chemical Geology,1967,2:263-269.
    [39] LIU Z L,DING H B,YANG G B.Distribution and characteristics of low molecular-weight organic acids in the surface water of the Jiaozhou Bay[J].Advances in Marine Science,2013,31(1):116-127.刘宗丽,丁海兵,杨桂朋.胶州湾表层水中低分子量有机酸的分布及特征[J].海洋科学进展,2013,31(1):116-127.
    [40] XU X,ZANG K,CHENG H,et al.Aragonite saturation state and dynamic mechanism in the Southern Yellow Sea,China[J].Marine Pollution Bulletin,2016,109(1):142-150.
    [41] XUE L,CAI W,SUTTON A J,et al.Sea surface aragonite saturation state variations and control mechanisms at the Gray's Reef time-series site off Georgia,USA (2006—2007)[J].Marine Chemistry,2017,195:27-40.
    [42] JIANG L Q,FEELY R A,CARTER B R,et al.Climatological distribution of aragonite saturation state in the global oceans[J].Global Biogeochemical Cycles,2015,29:1656-1673.
    [43] OMAR A M,SKJELVAN I,ERGA S R,et al.Aragonite saturation states and pH in western Norwegian Fjords:seasonal cycles and controlling factors,2005-2009[J].Ocean Science,2016,12(4):937-951.
    [44] TYNAN E,TYRRELL T,ACHTERBERG E P.Controls on the seasonal variability of calcium carbonate saturation states in the Atlantic gateway to the Arctic Ocean[J].Marine Chemistry,2014,158:1-9.
    [45] XU Y Y,CAI W J,GAO Y,et al.Short-term variability of aragonite saturation state in the central Mid-Atlantic Bight[J].Journal of Geophysical Research:Oceans,2017,122(5):4257-4273.DOI:10.1002/2017JC012901.
    [46] TANS P,KEELING R.Trends in atmospheric carbon dioxide[EB/OL].[2018-10-28].ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt.
    [47] ZHANG L J,XUE L Q,SONG M,et al.Distribution of the surface partial pressure of CO2 in the Southern Yellow Sea and its controls[J].Continental Shelf Research,2010,30:293-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700