用户名: 密码: 验证码:
青葙修复镉污染土壤的田间试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Field Experiment on Remediation of Cadmium Contaminated Soil by Celosia argentea L.
  • 作者:傅校锋 ; 刘杰 ; 朱文杰 ; 吕黛琳 ; 江文晔
  • 英文作者:FU Xiaofeng;LIU Jie;ZHU Wenjie;Lü Dailin;JIANG Wenye;Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology,Guilin University of Technology;Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area,Guilin University of Technology;
  • 关键词:青葙 ; Cd ; 氯化铵 ; 柠檬酸 ; 田间试验
  • 英文关键词:Celosia argentea L.;;cadmium;;ammonium chloride;;citric acid;;field trial
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:桂林理工大学环境污染控制理论与技术广西重点实验室;桂林理工大学岩溶地区水污染控制与用水安全保障协同创新中心;
  • 出版日期:2019-08-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:04
  • 基金:广西科技重大专项(桂科AA17204047)
  • 语种:中文;
  • 页:332-337
  • 页数:6
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:X53;X173
摘要
为探索氯化铵与柠檬酸和青葙(Celosia argentea L.)联合修复重金属Cd污染土壤的方法,通过田间试验,研究了氯化铵与柠檬酸对青葙生长和吸收富集Cd的影响、根际土与非根际土之间的差异,以及对土壤Cd含量和形态的影响。结果表明,种植青葙并施加氯化铵(C+AC)处理能显著促进青葙地上部干重的提高,比只种植青葙(C)处理增产53.03%;种植青葙并施加柠檬酸(C+CA)处理能提高青葙对Cd的吸收富集能力,地上部Cd含量比C处理提高16.64%;而C+AC处理对青葙地上部Cd积累量的促进效果最佳,比C处理提高69.49%;青葙的种植均显著降低根际土Cd的酸溶态含量,C、C+AC和C+CA处理的降低幅度分别为10.31%,15.00%和12.67%,显著大于非根际土;C+CA处理的土壤Cd含量降率最大,为5.33%,而不种植青葙,不施加药剂(CK)处理为1.43%,只有C+CA处理的26.83%。因此,青葙植物提取对Cd的降低仍起关键作用,且施加柠檬酸对表层土壤Cd的修复性能最好。
        In order to explore the remediation method of heavy metal cadmium(Cd)contaminated soil by combining ammonium chloride with citric acid and Celosia argentea L.,the effects of ammonium chloride and citric acid on the growth and absorption and enrichment of Cd of C.argentea L.,the difference between rhizosphere soil and non-rhizosphere soil,and the effects of ammonium chloride and citric acid on soil Cd content and morphology were studied through field experiment.The results indicated that planting C.argentea L.and applying ammonium chloride treatment(C+AC)could significantly improve the dry weight of above-ground parts of C.argentea L.,which increased the yield by 53.03%compared with only planting C.argentea L.(C)treatment.C+CA treatment could improve the ability of Cd absorption and enrichment of C.argentea L.,and the Cd content in the above ground parts was 16.64% higher than that of C treatment.The C+AC treatment had the best effect on the accumulation of Cd in the above ground parts of C.argentea L.,which was 69.49% higher than that of C treatment.The cultivation of C.argentea L.had significantly reduced the acid-soluble content of Cd in the rhizosphere soil,and the reductions of acid-soluble content of Cd in C,C+AC and C+CA treatments were 10.31%,15.00%and 12.67%,respectively,which were significantly greater than that in non-rhizosphere soil.The soil Cd reduction rate of C+CA treatment was the highest,which was 5.33%,while that of the CK(without planting C.argentea L.or applying chemicals)was 1.43%,which was only 26.83%of the C+CA treatment.Therefore,the extraction of C.argentea L.still played a key role in Cd r eduction,and the best remediation performance of citric acid on surface soil Cd pollution.
引文
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[R].北京:环境保护部,国土资源部,2014.
    [2]包姣,韦惠琴,赵秀兰.低分子量有机酸强化烟草修复镉污染土壤的适用性研究[J].水土保持学报,2012,26(2):265-270.
    [3]李江遐,张军,马友华,等.不同水稻品种对镉的吸收转运及其非蛋白巯基含量的变化[J].生态环境学报,2017,26(12):2140-2145.
    [4]Meers S E,Qadir M,Caritat P,et al.EDTA-assisted Pb phytoextraction[J].Chemosphere,2009,74(10):1279-1291.
    [5]Hazrat A,Ezzat K,Muhammad A S.Phytoremediation of heavy metals concepts and applications[J].Chemosphere,2013,91(7):869-881.
    [6]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.
    [7]梁俊.东南景天镉解毒相关代谢过程及关键基因克隆[D].杭州:浙江大学,2017.
    [8]姚诗音,刘杰,王怡璇,等.青葙对镉的超富集特征及累积动态研究[J].农业环境科学学报,2017,36(8):1470-1476.
    [9]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(Solanum nigrum L.)[J].科学通报,2004,49(24):2568-2573.
    [10]Fayiga A O,Ma L Q,Rathinasabapathi B.Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L.[J].Environmental and Experimental Botany,2008,62:231-237.
    [11]王林,周启星,孙约兵.氮肥和钾肥强化龙葵修复镉污染土壤[J].中国环境科学,2008,28(10):915-920.
    [12]Kuldeep B,Rana P S.Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis[J].Ecological Engineering,2015,74(1):93-100.
    [13]Liu W X,Zhang C J,Hu P J,et al.Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii[J].Environmental Science and Pollution Research,2016,23(2):1246-1253.
    [14]汪洁,沈丽波,李柱,等.氮肥形态对伴矿景天生长和锌镉吸收性的影响研究[J].农业环境科学学报,2014,33(11):2118-2124.
    [15]林昕.利用油菜对镉、铅污染农田土壤植物修复研究[D].昆明:昆明理工大学,2010.
    [16]Vigliotta G,Matrella S,Cicatelli A,et al.Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize[J].Journal of Environmental Management,2016,179:93-102.
    [17]Han Y L,Zhang L L,Gu J G,et al.Citric acid and EDTA on the growth,photosynthetic properties and heavy metal accumulation of Iris halophila Pall.cultivated in Pb mine tailings[J].International Biodeterioration and Biodegradation,2016,128:15-21.
    [18]贾倩闻,雄治廷.外源柠檬酸和乳酸对海州香薷吸收和转运镉的影响[J].武汉大学学报(理学版),2017,63(1):81-85.
    [19]Ehsan S,Ali S,Noureen S,et al.Citric acid assisted phytoremediation of cadmium by Brassica napus L.[J].Ecotoxicology Environmental Safety,2014,106:164-172.
    [20]姚诗音.超富集植物青葙对土壤镉的修复性能及强化措施研究[D].广西桂林:桂林理工大学,2017.
    [21]张云霞,宋波,杨子杰,等.广西某铅锌矿影响区农田土壤重金属污染特征及修复策略[J].农业环境科学学报,2018,37(2):239-249.
    [22]吴秉奇,刘淑杰,张淼,等.接种耐镉细菌对青葙吸收积累土壤中镉的影响[J].生态学杂志,2014,33(12):3409-3415.
    [23]苏宝玲,韩士杰,王建国.根际微域研究中土样采集方法的研究进展[J].应用生态学报,2000,11(3):477-480.
    [24]USEPA.Risk-based concentration table[R].Washington DC:USEPA,2000:165.
    [25]Rauret G,Lopez-Sanchez J F,Sahuquillo A,et al.Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring Jem,1999,1(1):59.
    [26]沈斌,伍钧,孟晓霞,等.柠檬酸对鱼腥草吸收累积铅锌矿区土壤中重金属的影响[J].水土保持学报,2015,29(3):320-324.
    [27]聂发辉.关于超富集植物的新理解[J].生态环境,2005,14(1):136-138.
    [28]于志国.紫茉莉富集土壤中镉的机理及强化修复技术研究[D].长春:吉林农业大学,2008.
    [29]陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社,2008.
    [30]景琪,李晔,张譞,等.螯合剂和商陆联合修复重金属Cd、Cu污染土壤的田间试验[J].武汉理工大学学报,2014,36(4):139-143.
    [31]周建利,邵乐,朱凤榕,等.间套种及化学强化修复重金属污染酸性土壤:长期田间试验[J].土壤学报,2014,51(1):1056-1065.
    [32]生态环境部,国家市场监督管理总局.GB 15618-2018土壤环境质理农用地土壤污染风险管控标准[S].北京:生态环境部,2018.
    [33]曹志远,王开爽,谢修鸿,等.螯合剂不同施用方式下花卉植物修复铅污染土壤的效果[J].水土保持学报,2014,28(5):287-290.
    [34]杨军,郑袁明,陈同斌.中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险[J].地理研究,2006,25(3):449-455.
    [35]殷永超,吉普辉,宋雪英,等.龙葵(Solanum nigrum L.)野外场地规模Cd污染土壤修复试验[J].生态学杂志,2014,33(11):3060-3067.
    [36]Jalali M,Khanlari Z V.Redistribution of fractions of zinc,cadmium,nickel,copper,and lead in contaminated calcareous soils treated with EDTA[J].Archives of Environmental Contamination and Toxicology,2007,53:519-532.
    [37]Sarkar D,Andra S S,Saminathan S K M,et al.Chelant-aided enhancement of lead mobilization in residential soils[J].Environmental Pollution,2008,156:1139-1148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700