用户名: 密码: 验证码:
光叶眼子菜响应夏季高温的模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A SIMULATION STUDY ON THE RESPONSES OF POTAMOGETON LUCENS TO HIGH TEMPERATURE IN SUMMER
  • 作者:邱念伟 ; 高珊 ; 周培 ; 舒凤月 ; 侯元同 ; 周峰
  • 英文作者:QIU Nian-Wei;GAO Shan;ZHOU Pei-Jun;SHU Feng-Yue;HOU Yuan-Tong;ZHOU Feng;School of Life Science, Qufu Normal University;School of Food Science, Nanjing Xiaozhuang University;
  • 关键词:高温 ; 光叶眼子菜 ; 光合作用 ; 叶绿素荧光动力学
  • 英文关键词:High temperature;;Potamogeton lucens;;Photosynthesis;;Chlorophyll fluorescence kinetics
  • 中文刊名:水生生物学报
  • 英文刊名:Acta Hydrobiologica Sinica
  • 机构:曲阜师范大学生命科学学院;南京晓庄学院食品科学学院;
  • 出版日期:2019-01-04 13:52
  • 出版单位:水生生物学报
  • 年:2019
  • 期:01
  • 基金:长江科学院开放研究基金(CKWV2015238/KY);; 国家自然科学基金(31270233);; 中国博士后科学基金(2016M592158)资助~~
  • 语种:中文;
  • 页:185-192
  • 页数:8
  • CN:42-1230/Q
  • ISSN:1000-3207
  • 分类号:X173
摘要
为探讨南四湖优势物种光叶眼子菜在夏季浅水区的衰亡原因,用25℃、30℃、35℃和40℃的恒温水浴模拟夏季高温处理光叶眼子菜(Co. Potamogeton lucens L.)3h。生化结果显示,在35℃及以上高温下,光叶眼子菜的蛋白质含量、可溶性糖含量和叶绿素含量显著下降,丙二醛含量显著上升,说明35℃以上高温对光叶眼子菜产生了显著伤害。光叶眼子菜的光合系统对高温更为敏感,在高温胁迫下标准化的叶绿素荧光动力学曲线上J相和K相显著隆起,但并未发现明显的L-band。进一步解析叶片的叶绿素荧光动力学参数,结果显示:随着处理温度的升高,反应中心的初始关闭速率(dVG/dto, dV/dto)变慢,但到达P相的所需时间(T_(fm))变短;光系统Ⅱ(PhotosystemⅡ, PSⅡ)的光化学效率(F_v/F_m)减小,非光化学效率(K_n)、J相相对可变荧光强度(Vj)和热耗散(DI_o/RC、DI_o/CS_o、F_o/F_m)增大;尽管高温下质体醌周转次数(N)、还原速率(S_m/T_(fm))和Ⅰ相相对可变荧光强度(V_i)变化不显著,但质体醌库(S_m)明显减小;单个反应中心光能的吸收(ABS/RC)和捕获效率(TR_o/RC)增加,电子传递效率(ET_o/RC)却呈下降趋势;单位激发态面积的光能捕获(TR_o/CS_o)和电子传递效率(ET_o/CS_o)均降低,反应中心数目(RC/CS_o)显著减少。上述高温胁迫效应导致整个叶片的结构功能指数(SFIabs)、性能指数(PI_(abs))以及光合驱动力(DF)显著降低。高温对光叶眼子菜的伤害主要是导致其光系统Ⅱ放氧复合体失活、反应中心数目减少和反应中心的光化学效率下降,进而诱导活性氧的产生,对细胞造成伤害。因此,光叶眼子菜属于对高温敏感的水生植物。
        To explore the cause of Potamogeton lucens' s decline, a dominant plant inhabiting the shallow water of Nansi Lake, the physiological and biochemical changes of P. lucens were examined under a group of constant temperatures at 25℃, 30℃, 35℃, and 40℃, respectively, for 3 h. The results showed that the contents of protein, soluble sugar and chlorophyll decreased significantly, while the content of malondialdehyde(MDA) increased significantly at a high temperature above 35℃. The results indicated that high temperature above 35℃ had significant damage to P. lucens.The photosystem of P. lucens was more sensitive to heat stress. The characteristics of standardized chlorophyll fluorescence kinetics curves under heat stress were as follows. Peaks at J and K phases were observed, but no L-band was found on the normalized chlorophyll fluorescence kinetics curves. The chlorophyll fluorescence parameters were calculated from the OJIP curves of the heat-treated leaves. The results showed that the initial closing speed of the reaction center(dVG/dto, dV/dto) slowed down with the increase of temperature under heat stress, but it took a shorter time to reach the maximal fluorescence(T_(fm)). The maximum quantum yield of PSⅡ(Photosystem Ⅱ) photochemistry(F_v/F_m) decreased. However, the non-photochemical constants(K_n), relative variable fluorescence at the J-step(Vj), and dissipated energy flux(DI_o/RC, DI_o/CS_o, F_o/F_m) increased under heat stress. Although the turn-over number of QA(N), average redox state of QA(S_m/T_(fm)), and relative variable fluorescence at the Ⅰ-step(V_i) barely changed, the plastoquinone pool(S_m) decreased significantly at high temperature. Absorption and trapped energy flux per RC(ABS/RC, TR_o/RC; reaction center, RC) increased, whereas the electron transport efficiency per RC(ET_o/RC) decreased when temperature increased. Heat stress also decreased the trapped energy flux, electron transport flux and density of RCs per CS(TR_o/CS_o,ET_o/CS_o, RC/CS_o; cross section, CS). These effects of heat stress on photosystem eventually led to a significant reduction in the structure and function index(SFIabs), performance index(PI_(abs)), and drive force for photosynthesis(DF) of the P. lucens leaves. These results demonstrated that heat stress mainly caused inactivation of oxygen-evolving complex of PSⅡ, reduction of the density of RCs, and decrease of photochemical efficiency of RC in P. lucens plants, and these led to the production of reactive oxygen species, and thus caused remarkable damage to cells. Therefore, P. lucens is a sensitive aquatic plant to high temperature in summer.
引文
[1]Zhao J Q.Review:Impact of south-to-north water diversion project on ecological environment in Nansi Lake[J].Journal of Southern Agriculture,2016,10(36):108-112[赵剑桥.南水北调东线工程对南四湖生态环境影响研究综述.南方农业,2016,10(36):108-112]
    [2]Wang C L.Plant community investigation and seasonal dynamic analysis of wetlands in Nansi Lake[D].Thesis for Master of Science.Qufu Normal University,Qufu.2014[王长龙.南四湖湿地植物群落调查及季节动态分析.硕士学位论文,曲阜师范大学,曲阜.2014]
    [3]Wahid A,Gelani S,Ashraf M,et al.Heat tolerance in plants:an overview[J].Environmental and Experimental Botany,2007,61(3):199-223
    [4]Pilon J,Santamaría L.Clonal variation in the thermal response of the submerged aquatic macrophyte Potamogeton pectinatus[J].Journal of Ecology,2002,90(1):141-152
    [5]Riis T,Olesen B,Clayton J S,et al.Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species[J].Aquatic Botany,2012,102:56-64
    [6]Wen M,Sheng Z,Lin Q Z.A Study on new protein plant-Hydrilla verticillata(L.f.)Royle:II.Study on the quality of ecology and the experiment of introduction and cultivation of this plant[J].Journal of Hunan Agricultural University,1995,1:10-16[文明,盛哲,林亲众.蛋白质新资源植物-黑藻的研究:II.生态学特性及引种栽培试验.湖南农学院学报,1995,1:10-16]
    [7]Ma J M,Jin T X,He F,et al.Responses of Elodea nuttallii and Ceratophyllum demersum to high temperature[J].Fresenius Environmental Bulletin,2009,18(9):1592-1600
    [8]De Silva H C C,Asaeda T.Effects of heat stress on growth,photosynthetic pigments,oxidative damage and competitive capacity of three submerged macrophytes[J].Journal of Plant Interactions,2017,12(1):228-236
    [9]Moss B,McKee D,Atkinson D,et al.How important is climate?Effects of warming,nutrient addition and fish on phytoplankton in shallow lake microcosms[J].Journal of Applied Ecology,2003,40(5):782-792
    [10]Doyle R,Grodowitz M,Smart M,et al.Separate and interactive effects of competition and herbivory on the growth,expansion,and tuber formation of Hydrilla verticillata[J].Biological Control,2007,41(3):327-338
    [11]Qiu N W,Wang X S,Yang F B,et al.Fast extraction and precise determination of chlorophyll[J].Chinese Bulletin of Botany,2016,51(5):667-678[邱念伟,王修顺,杨发斌,等.叶绿素的快速提取与精密测定.植物学报,2016,51(5):667-678]
    [12]Bradford M M.A rapid and sensitive method for the quantization of microgram quantities of protein utilizingthe principle of protein-dye binding[J].Analytical Biochemistry,1976,72(s1-2):248-254
    [13]Wang Y,Hu S,Fu W C,et al.A new method for fast determination of soluble sugar content in plant tissue:TBA-method[J].Journal of Jinggangshan University,2013,34(3):37-40[王妍,胡胜,付文诚,等.一种快速测定可溶性糖含量的新方法:TBA法.井冈山大学学报,2013,34(3):37-40]
    [14]Li P M,Gao H Y,Strasser R J.Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J].Journal of Plant Physiology and Molecular Biology,2005,31(6):559-566[李鹏民,高辉远,Strasse R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理学与分子生物学学报,2005,31(6):559-566]
    [15]Qiu N W,Zhou F,Gu Z J,et al.Photosynthetic functions and chlorophyll fast fluorescence characteristics of five Pinus species[J].Chinese Journal of Applied Ecology,2012,23(5):1181-1187[邱念伟,周峰,顾祝军,等.5种松属树种光合功能及叶绿素快相荧光动力学特征比较.应用生态学报,2012,23(5):1181-1187]
    [16]Kalaji H M,Jajoo A,Oukarroum A,et al.Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J].Acta Physiologiae Plantarum,2016,38(4):102
    [17]Strasser R J,Srivastava A,Tsimilli-Michael M.The fluorescence transient as a tool to characterise and screen photosynthetic samples.In:Yunus M,Pathre U,Mohanty P(Eds.),Probing Photosynthesis:Mechanism,Regulation and Adaptation[M].London:Taylor and Francis Press.2000,445-483
    [18]Tsimilli-Michael M,Strasser R J.Experimental resolution and theoretical complexity determine the amount of information extractable from the chlorophyll fluorescence transient OJIP[J].Springer Netherlands,2008,8(10):e77941-e77941
    [19]Yang X F,Guo F Q.Research advances in mechanisms of plant leaf senescence under heat stress[J].Plant Physiology Journal,2014,50(9):1285-1292[杨小飞,郭房庆.高温逆境下植物叶片衰老机理研究进展.植物生理学报,2014,50(9):1285-1292]
    [20]Jespersen D,Zhang J,Huang B R.Chlorophyll loss associated with heat-induced senescence in bentgrass[J].Plant Science,2016,249:1-12
    [21]Berry J A,Bjorkman O.Photosynthetic response and ada ptation to temperature in higher plants[J].Annual Re-view of Plant Physiology,1980,31(1):491-543
    [22]Oukarroum A,Madidi S E,Strasser R J.Differential heat sensitivity index in barley cultivars(Hordeum vulgare L.)monitored by chlorophyll a fluorescence OKJIP[J].Plant Physiology and Biochemistry,2016,105:102-108
    [23]Allakhverdiev S I,Kreslavski V D,Klimov V V,et al.Heat stress:an overview of molecular responses in photosynthesis[J].Photosynthesis Research,2008,98(1-3):541-550
    [24]Busheva M,Tzonova I,Stoitchkova K,et al.Heat-induced reorganization of the structure of photosystem IImembranes:Role of oxygen evolving complex[J].Journal of Photochemistry and Photobiology B-Biology,2012,117(2):214-221
    [25]Kouril R,Lazar D,Ilik P,et al.High-temperature induced chlorophyll fluorescence rise in plants at40-50℃:Experimental and theoretical approach[J].Photosynthesis Research,2004,81:49-66
    [26]Yan K,Chen P,Shao H,et al.Dissection of photosynthetic electron transport process in sweet sorghum under heat stress[J].PLoS One,2013,8(5):e62100
    [27]Lipova L,Krchnak P,Komenda J,et al.Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo[J].Biochimica et Biophysica Acta,2010,1797(1):63-70
    [28]Lu T,Meng Z J,Zhang G X,et al.Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant(Solanum lycopersicum L.)[J].Frontiers in Plant Science,2017,8(182):365
    [29]Asada K.The water-water cycle in chloroplasts:scavenging of active oxygen and dissipation of excess photons[J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639
    [30]Wang M,Sha W,Zhang M J,et al.Effects of high temperature stress on the physiological and biochemical characteristics in Grimmia pilifera[J].Genomics and Applied Biology,2015,34(6):1290-1295[王曼,沙伟,张梅娟,等.高温胁迫对毛尖紫萼藓生理生化特性的影响.基因组学与应用生物学,2015,34(6):1290-1295]
    [31]Allakhverdiev S I,Feyziev Y M,Ahmed A,et al.Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose[J].Journal of Photochemistry and Photobiology B:Biology,1996,34(2-3):149-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700