用户名: 密码: 验证码:
稀土氧化物纳米颗粒对植物的毒性效应及影响因素研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advances on Plant Toxicity Induced by Nanoparticles of Rare Earth Oxide
  • 作者:于学茹 ; 王巨媛 ; 王翠苹 ; 田晓飞 ; 孙树臣 ; 王萍 ; 徐汝悦 ; 翟胜
  • 英文作者:YU Xue-ru;WANG Ju-yuan;WANG Cui-ping;TIAN Xiao-fei;SUN Shu-chen;WANG Ping;XU Ru-yue;ZHAI Sheng;School of Environment and Planning,Liaocheng University;College of Agronomy,Liaocheng University;College of Environmental Science and Engineering, Nankai University/Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education,Tianjin Key Laboratory of Environmental Remediation and Pollution Control;
  • 关键词:REO ; NPs ; 植物 ; 毒性效应 ; 毒性机理 ; 影响因素
  • 英文关键词:REO NPs;;crops;;phytotoxicity effect;;phytotoxicity mechanism;;affecting factors
  • 中文刊名:福建农业学报
  • 英文刊名:Fujian Journal of Agricultural Sciences
  • 机构:聊城大学环境与规划学院;聊城大学农学院;南开大学环境科学与工程学院/环境污染过程及基准教育部重点实验室/天津市环境修复和控制实验室;
  • 出版日期:2019-06-15
  • 出版单位:福建农业学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(41701243、41807092);; 山东省自然科学基金项目(ZR2013DM012、ZR2013DL005);; 山东省高校科研计划项目(J18KA173);; 聊城大学科技计划项目(318011704);聊城大学大学生科技文化创新项目(26312171001、CXCY2017041、201710447041、CXCY2018038、201810447022、CXCY2018160)
  • 语种:中文;
  • 页:123-131
  • 页数:9
  • CN:35-1195/S
  • ISSN:1008-0384
  • 分类号:X171.5
摘要
稀土氧化物纳米颗粒(Rare Earth Oxide Nanoparticles,REO NPs)具有纳米毒性和金属毒性的双重效应,其毒性效应、生态环境风险引起国内外学者的广泛关注。随着纳米技术的快速发展,纳米颗粒必然通过各种途径进入环境,给生态环境与人类健康造成危害。因此,研究REO NPs在环境介质中的迁移转化及其对植物的毒性效应机制,对REO NPs合理应用及其生态安全评价具有重要的理论价值和实践指导意义。本文通过查阅文献资料,总结了在水培、土培条件下REO NPs对蔬菜和农作物毒性效应、毒性机理及其影响因素,并在此基础上就REO NPs毒性效应和机理研究进行了展望。REO NPs毒性效应主要表现为:(1)抑制根系生长发育;(2)抑制叶绿素合成进而影响光合效率和生物量。毒性机理主要包括:(1)REO NPs溶出离子直接致毒或与矿质营养离子发生竞争,抑制营养吸收;(2)REO NPs破坏细胞选择透性、产生活性氧自由基、使细胞膜发生脂质过氧化而丧失功能;(3)REO NPs附着于组织表面,阻碍水分、营养物质运输和离子交换。影响REO NPs毒性的因子主要包括REO NPs特性(如溶解性、带电性、粒径大小及形状)、植物本身敏感性或耐受性、环境条件(如酸碱性、带电性等)。REO NPs的毒性效应研究存在选择的污染物类型较少,主要针对幼苗期的植物,少有分子生物学、土培方式、全环境条件研究等问题,后期可从上述方面进行深入研究。
        Rare earth oxide nanoparticles(REO NPs) have caught the attention by scientists worldwide as they can potentially harm the environment due to the toxicity associated with the particle size as well as the chemical property. With the advancement of nanotechnology, NPs inevitably enter the environment through various channels causing detrimental effects on the environment and human health. Therefore, studying the translocation and transformation of REO NPs in media and the response mechanism of plants toward the toxicity carries important theoretical and practical significance for the material applications and ecological security. This article summarizes the mechanism and affecting factors associated with the toxicity of REO NPs on the crops cultivated on soil or hydroponics and discusses the prospects of future research and utilization of the NPs. Currently, the toxic effects induced by REO NPs on plants were believed to include(1) the inhibition of root growth and development and(2) the retardation of chlorophyll synthesis reducing the photosynthetic efficiency and biomass accumulation. The toxicity mechanisms focused by various studies were mainly on(1) the functions directly caused by the dissolved REO NPs ions or their competing with other mineral ions on nutrient absorption,(2) the obstruction of selective cellular permeability, the production of oxygen free radicals, and the lipid peroxidation of cell membrane, and(3) the adherence of particles on surface of the plant tissues interfering normal water and nutrients transportation and ion exchange. Major factors that affect the toxicity might encompass the properties of REO NPs(such as, solubility, electrification, particle size, and shape), the sensitivity or tolerance of a plant to REO NPs, and the environmental conditions(such as, acidity, alkalinity, electrification, etc.).The study on toxic effects of REO NPs has fewer types of selected pollutants, mainly for plants in seedling stage, and fewer study on molecular biology, soil culture methods, and all environmental conditions. In the later stage, we can conduct in-depth research from the above aspects.
引文
[1]LEAD J R,BATLEY G E,ALVAREZ P J J,et al.Nanomaterials in the environment:behavior,fate,bioavailability,and effects-an updated review,2018:2029-2063.
    [2]AUFFAN M,ACHOUAK W,ROSE J,et al.Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli[J].Environmental Science&Technology,2008,42(17):6730-6735.
    [3]AUFFAN M,ROSE J,PROUX O,et al.Enhanced adsorption of arsenic onto maghemites nanoparticles:As(III)as a probe of the surface structure and heterogeneity[J].Langmuir,2008,24(7):3215-3222.
    [4]NEL A,XIA T,MADLER L,et al.Toxic potential of materials at the nanolevel[J].Science,2006,311(5761):622-627.
    [5]GEOFF B.Nanotechnology:A little knowledge[J].Nature,2003,424(6946):246-248.
    [6]SERVICE R.American Chemical Society meeting.Nanomaterials show signs of toxicity[J].Science(New York,NY),2003,300(5617):243.
    [7]NATASHA G.Nanoparticle safety in doubt[J].Nature,2009,460(7258):937.
    [8]SONG Y,LI XDU X.Exposure to nanoparticles is related to pleural effusion,pulmonary fibrosis and granuloma[J].European Respiratory Journal,2009,34(3):559-567.
    [9]OBERDORSTER G,OBERDORSTER EOBERDORSTER J.Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J].Environmental Health Perspectives,2005,113(7):823-839.
    [10]PATIL S,KUIRY S,SEAL S,et al.Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating[J].Journal of Nanoparticle Research,2002,4(5):433-438.
    [11]CORMA A,ATIENZAR P,GARCIA H,et al.Hierarchically mesostructured doped CeO2 with potential for solar-cell use[J].Nature Materials,2004,3(6):394.
    [12]JUDY J D,UNRINE J MBERTSCH P M.Evidence for biomagnification of gold nanoparticles within a terrestrial food chain[J].Environmental Science&Technology,2010,45(2):776-781.
    [13]王震宇,赵建,李娜,等,人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J].环境科学,2010,31(6):1409-1418.WANG Z Y,ZHAO J,LI N,et al.Review of Ecotoxicity and Mechanism of Engineered Nanoparticles to Aquatic Organisms[J].Environmental Science,2010,31(6):1409-1418.(in Chinese)
    [14]MA X,GEISER-LEE J,DENG Y,et al.Interactions between engineered nanoparticles(ENPs)and plants:phytotoxicity,uptake and accumulation[J].Science of the Total Environment,2010,408(16):3053-3061.
    [15]STEGEMEIER J P,COLMAN B P,SCHWAB F,et al.Uptake and distribution of silver in the aquatic plant Landoltia punctata(duckweed)exposed to silver and silver sulfide nanoparticles[J].Environmental Science&Technology,2017,51(9):4936-4943.
    [16]LIN D,XING B.Root uptake and phytotoxicity of ZnOnanoparticles[J].Environmental Science&Technology,2008,42(15):5580-5585.
    [17]王震宇,于晓莉,高冬梅,等,人工合成纳米TiO2和MWCNTs对玉米生长及其抗氧化系统的影响[J].环境科学,2010,31(2).480-487.WANG Z Y,YU X L,GAO D M,et al.Effect of nanorutile TiO2and multi-walled carbon nanotubeson the growth of maize(Zeamays L.)seedlings and the relev antantioxidant response[J].Environmental Science,2010,31(2).480-487.(in Chinese)
    [18]ASLI SNEUMANN P M.Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J].Plant Cell&Environment,2009,32(5):577-584.
    [19]金盛杨,王玉军,汪鹏,等,纳米氧化铜对小麦根系生理生化行为的影响[J].土壤,2011,43(4):605-610.JIN S Y,WANG Y J,WANG P,et al.Effects of CuONanoparticles on Physiological and Biochemical Behaviors of Wheat(Triticum aestivum L.)Root[J].Soils,2011,43(4):605-610.(in Chinese)
    [20]RUI Y,ZHANG P,ZHANG Y,et al.Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate[J].Environmental Pollution,2015,198:8-14.
    [21]MIRALLES P,CHURCH T LHARRIS A T.Toxicity,uptake,and translocation of engineered nanomaterials in vascular plants[J].Environmental Science&Technology,2012,46(17):9224-9239.
    [22]CHEN G,MA C,MUKHERJEE A,et al.Tannic acid alleviates bulk and nanoparticle Nd2O3toxicity in pumpkin:a physiological and molecular response[J].Nanotoxicology,2016,10(9):1243-1253.
    [23]LIMAN R,ACIKBAS YCI GˇERCI H,Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests[J].Ecotoxicology and Environmental Safety,2019,168:408-414.
    [24]ZHANG Z,HE X,ZHANG H,et al.Uptake and distribution of ceria nanoparticles in cucumber plants[J].Metallomics,2011,3(8):816-822.
    [25]MA Y,KUANG L,HE X,et al.Effects of rare earth oxide nanoparticles on root elongation of plants[J].Chemosphere,2010,78(3):273-279.
    [26]MA Y,ZHANG P,ZHANG Z,et al.Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber[J].Nanotoxicology,2015,9(2):262-270.
    [27]ZHANG P,MA Y H,ZHANG Z Y.Interactions between engineered nanomaterials and plants:phytotoxicity,uptake,translocation,and biotransformation,in Nanotechnology and Plant Sciences[J].Springer,2015:77-99.
    [28]JONES D L.Organic acids in the rhizosphere-a critical review[J].Plant and Soil,1998,205(1):25-44.
    [29]WANG Z,XIE X,ZHAO J,et al.Xylem-and phloem-based transport of CuO nanoparticles in maize(Zea mays L.)[J].Environmental Science&Technology,2012,46(8):4434-4441.
    [30]ZHAO L,SUN Y,HERNANDEZ-VIEZCAS J A,et al.Monitoring the environmental effects of CeO2 and ZnOnanoparticles through the life cycle of corn(Zea mays)plants and in situμ-XRF mapping of nutrients in kernels[J].Environmental Science&Technology,2015,49(5):2921-2928.
    [31]ZHAO L,PENG B,HERNANDEZ-VIEZCAS J A,et al.Stress response and tolerance of Zea mays to CeO2nanoparticles:cross talk among H2O2,heat shock protein,and lipid peroxidation[J].ACS Nano,2012,6(11):9615-9622.
    [32]RAHMAN N A,AROSLI W I W.Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn[J].Journal of King Saud UniversityScience,2014,26(2):119-127.
    [33]LIU Y,XU L,DAI Y.Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize(Zea mays L.)[C]//in IOPConference Series:Earth and Environmental Science,2018,IOP Publishing.
    [34]YUE L,MA C,ZHAN X,et al.Molecular mechanisms of maize seedling response to La2O3NP exposure:water uptake,aquaporin gene expression and signal transduction[J].Environmental Science:Nano,2017,4(4):843-855.
    [35]ZHANG W,MUSANTE C,WHITE J C,et al.Bioavailability of cerium oxide nanoparticles to Raphanus sativus L.in two soils.[J].Plant physiology and biochemistry,2017,110:185-193.
    [36]TRUJILLO-REYES J,VILCHIS-NESTOR A,MAJUMDARS,et al.Citric acid modifies surface properties of commercial CeO2nanoparticles reducing their toxicity and cerium uptake in radish(Raphanus sativus)seedlings[J].Journal of Hazardous Materials,2013,263,677-684.
    [37]LOPEZ-MORENO M L,DE LA ROSA G,HERNANDEZ-VIEZCAS J A,et al.Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2nanoparticles on soybean(Glycine max)plants[J].Environmental Science&Technology,2010,44(19):7315-7320.
    [38]SCHWABE F,SCHULIN R,LIMBACH L K,et al.Influence of two types of organic matter on interaction of CeO2nanoparticles with plants in hydroponic culture[J].Chemosphere,2013,91(4):512-520.
    [39]PRIESTER J H,GE Y,MIELKE R E,et al.Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption[J].Proceedings of the National Academy of Sciences,2012,109(37):E2451-E2456.
    [40]WANG Q,MA X,ZHANG W,et al.The impact of cerium oxide nanoparticles on tomato(Solanum lycopersicum L.)and its implications for food safety[J].Metallomics,2012,4(10):1105-1112.
    [41]ZHAO L,SUN Y,HERNANDEZ-VIEZCAS J A,et al.Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn:a life cycle study[J].Journal of Agricultural and Food Chemistry,2013,61(49):11945-11951.
    [42]MA Y,ZHANG P,ZHANG Z,et al.Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place?[J].Environmental Science&Technology,2015,49(17):10667-10674.
    [43]ZHANG P,MA Y,LIU S,et al.Phytotoxicity,uptake and transformation of nano-CeO2in sand cultured romaine lettuce[J].Environmental Pollution,2017,220:1400-1408.
    [44]MA Y,HE X,ZHANG P,et al.Xylem and phloem based transport of CeO2nanoparticles in hydroponic cucumber plants[J].Environmental Science&Technology,2017,51(9):5215-5221.
    [45]ZHANG P,MA Y,ZHANG Z,et al.Species-specific toxicity of ceria nanoparticles to Lactucaplants[J].Nanotoxicology,2015,9(1):1-8.
    [46]BARRIOS A C,RICO C M,TRUJILLO-REYES J,et al.Effects of uncoated and citric acid coated cerium oxide nanoparticles,bulk cerium oxide,cerium acetate,and citric acid on tomato plants[J].Science of the Total Environment,2016,563:956-964.
    [47]RICO C M,JOHNSON M G,MARCUS M A,et al.Intergenerational responses of wheat(Triticum aestivum L.)to cerium oxide nanoparticles exposure[J].Environmental Science:Nano,2017,4(3):700-711.
    [48]MA Y,HE X,ZHANG P,et al.Phytotoxicity and biotransformation of La2O3nanoparticles in a terrestrial plant cucumber(Cucumis sativus)[J].Nanotoxicology,2011,5(4):743-753.
    [49]DE LA TORRE ROCHE R,SERVIN A,HAWTHORNE J,et al.Terrestrial trophic transfer of bulk and nanoparticle La2O3does not depend on particle size[J].Environmental Science&Technology,2015,49(19):11866-11874.
    [50]ZHANG P,MA Y,ZHANG Z,et al.Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber(Cucumis sativus)[J].Environmental Science&Technology,2012,46(3):1834-1841.
    [51]ZHAO L,PERALTA-VIDEA J R,VARELA-RAMIREZ A,et al.Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil:Insight into the uptake mechanism[J].Journal of Hazardous Materials,2012,225,131-138.
    [52]RICO C M,MORALES M I,BARRIOS A C,et al.Effect of cerium oxide nanoparticles on the quality of rice(Oryza sativa L.)grains[J].Journal of Agricultural and Food Chemistry,2013,61(47):11278-11285.
    [53]OBERDORSTER G,STONE VDONALDSON K.Toxicology of nanoparticles:a historical perspective[J].Nanotoxicology,2007,1(1):2-25.
    [54]CABISCOL CATALA E,TAMARIT SUMALLA J,ROSSALVADOR J.Oxidative stress in bacteria and protein damage by reactive oxygen species[J].International Microbiology the Official Journal of the Spanish Society for Microbiology,2000,3(1):3-8.
    [55]SHARMA S SDIETZ K-J.The relationship between metal toxicity and cellular redox imbalance[J].Trends in Plant Science,2009,14(1):43-50.
    [56]KOVACIC P,SOMANATHAN R.Biomechanisms of nanoparticles(toxicants,antioxidants and therapeutics):electron transfer and reactive oxygen species[J].Journal of Nanoscience and Nanotechnology,2010,10(12):7919-7930.
    [57]GILL S STUTEJA N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant physiology and Biochemistry,2010,48(12):909-930.
    [58]SHARMA P,JHA A B,DUBEY R S,et al.Reactive oxygen species,oxidative damage,and antioxidative defense mechanism in plants under stressful conditions[J].Journal of Botany,2012,2012.
    [59]LEE J,FORTNER J D,HUGHES J B,et al.Photochemical production of reactive oxygen species by C60in the aqueous phase during UV irradiation[J].Environmental Science&Technology,2007,41(7):2529-2535.
    [60]BEGUM P,FUGETSU B.Phytotoxicity of multi-walled carbon nanotubes on red spinach(Amaranthus tricolor L.)and the role of ascorbic acid as an antioxidant[J].Journal of Hazardous Materials,2012,211(14):S119.
    [61]NAIR R,VARGHESE S H,NAIR B G,et al.Nanoparticulate material delivery to plants[J].Plant Science,2010,179(3):154-163.
    [62]RICO C M,MORALES M I,MCCREARY R,et al.Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings[J].Environmental Science&Technology,2013,47(24):14110-14118.
    [63]RICO C M,HONG J,MORALES M I,et al.Effect of cerium oxide nanoparticles on rice:a study involving the antioxidant defense system and in vivo fluorescence imaging[J].Environmental Science&Technology,2013,47(11):5635-5642.
    [64]XIA T,KOVOCHICH M,LIONG M,et al.Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J].ACS Nano,2007,2(1):85-96.
    [65]MA C,CHHIKARA S,XING B,et al.Physiological and molecular response of Arabidopsis thaliana L.to nanoparticle cerium and indium oxide exposure[J].ACS Sustainable Chemistry&Engineering,2013,1(7):768-778.
    [66]MAJUMDAR S,PERALTA-VIDEA J R,BANDYOPADHYAYS,et al.Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms[J].Journal of Hazardous Materials,2014,278:279-287.
    [67]PERALTA-VIDEA J R,HERNANDEZ-VIEZCAS J A,ZHAO L,et al.Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants[J].Plant Physiology and Biochemistry,2014,80:128-135.
    [68]张海,彭程,杨建军,等.金属型纳米颗粒对植物的生态毒理效应研究进展[J].应用生态学报,2013(3):885-892.ZHANG H,PENG C,YANG J J,et al.Eco-toxicological effect of metal-based nanoparticles on plants:Research progress[J].Chinese Journal of Applied Ecology,2013(3):885-892.(in Chinese)
    [69]KHODAKOVSKAYA M V,DE SILVA K,BIRIS A S,et al.Carbon nanotubes induce growth enhancement of tobacco cells[J].ACS Nano,2012,6(3):2128-2135.
    [70]LEE W-M,KWAK J IAN Y-J.Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor:media effect on phytotoxicity[J].Chemosphere,2012,86(5):491-499.
    [71]PORTER A E,GASS M,MULLER K,et al.Direct imaging of single-walled carbon nanotubes in cells[J].Nature Nanotechnology,2007,2(11):713.
    [72]JIA G,WANG H,YAN L,et al.Cytotoxicity of carbon nanomaterials:single-wall nanotube,multi-wall nanotube,and fullerene[J].Environmental Science&Technology,2005,39(5):1378-1383.
    [73]MAYSINGER D,LOVRIC'J,EISENBERG A,et al.Fate of micelles and quantum dots in cells[J].European Journal of Pharmaceutics and Biopharmaceutics,2007,65(3):270-281.
    [74]ORR G,PANTHER D J,PHILLIPS J L,et al.Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells[J].ACS Nano,2007,1(5):463-475.
    [75]LIMBACH L K,BEREITER R,MUULLER E,et al.Removal of oxide nanoparticles in a model wastewater treatment plant:influence of agglomeration and surfactants on clearing efficiency[J].Environmental Science&Technology,2008,42(15):5828-5833.
    [76]LIMBACH L K,LI Y,GRASS R N,et al.Oxide nanoparticle uptake in human lung fibroblasts:effects of particle size,agglomeration,and diffusion at low concentrations[J].Environmental Science&Technology,2005,39(23):9370-9376.
    [77]HOTZE E M,PHENRAT TLOWRY G V.Nanoparticle aggregation:challenges to understanding transport and reactivity in the environment[J].Journal of Environmental Quality,2010,39(6):1909-1924.
    [78]LIMBACH L K,GRASS R NSTARK W J.Physico-chemical differences between particle-and molecule-derived toxicity:Can we make inherently safe nanoparticles?[J].CHIMIAInternational Journal for Chemistry,2009,63(1-2):38-43.
    [79]LOPEZ-MORENO M L,DE LA ROSA G,HERNáNDEZ-VIEZCAS J A,et al.XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species[J].Journal of Agricultural and Food Chemistry,2010,58(6):3689.
    [80]BIRBAUM K,BROGIOLI R,SCHELLENBERG M,et al.No evidence for cerium dioxide nanoparticle translocation in maize plants[J].Environmental Science&Technology,2010,44(22):8718-8723.
    [81]WYTTENBACH A,FURRER V,SCHLEPPI P,et al.Rare earth elements in soil and in soil-grown plants[J].Plant and Soil,1998,199(2):267-273.
    [82]XU X,ZHU W,WANG Z,et al.Accumulation of rare earth elements in maize plants(Zea mays L.)after application of mixtures of rare earth elements and lanthanum[J].Plant and Soil,2003,252(2):267-277.
    [83]NAVARRO E,BAUN A,BEHRA R,et al.Environmental behavior and ecotoxicity of engineered nanoparticles to algae,plants,and fungi[J].Ecotoxicology,2008,17(5):372-386.
    [84]QUIK J T,LYNCH I,VAN HOECKE K,et al.Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water[J].Chemosphere,2010,81(6):711-715.
    [85]DOMINGOS R F,TUFENKJI N,WILKINSON K J.Aggregation of titanium dioxide nanoparticles:role of a fulvic acid[J].Environmental Science&Technology,2009,43(5):1282-1286.
    [86]GHOSH S,MASHAYEKHI H,BHOWMIK P,et al.Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids[J].Langmuir,2009,26(2):873-879.
    [87]SEHGAL A,LALATONNE Y,BERRET J-F,et al.Precipitation Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid):Toward Stable Dispersions[J].Langmuir,2005,21(20):9359-9364.
    [88]COLLIN B,OOSTVEEN E,TSYUSKO O V,et al.Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans[J].Environmental Science&Technology,2014,48(2):1280-1289.
    [89]YANG KXING B.Adsorption of fulvic acid by carbon nanotubes from water[J].Environmental Pollution,2009,157(4):1095-1100.
    [90]HYUNG H,KIM J-H.Natural organic matter(NOM)adsorption to multi-walled carbon nanotubes:effect of NOMcharacteristics and water quality parameters[J].Environmental Science&Technology,2008,42(12):4416-4421.
    [91]ROVIRA A D.Plant root exudates[J].The Botanical Review,1969,35(1):35-57.
    [92]JONES D L,DARRAH P R.Role of root derived organic acids in the mobilization of nutrients from the rhizosphere[J].Plant and Soil,1994,166(2):247-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700