用户名: 密码: 验证码:
用潜在疏密度评价林分长势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluating stand growth state by potential density of stocking
  • 作者:刘瑞红 ; 惠刚盈 ; 张岗岗 ; 刘文桢 ; 张弓乔 ; 胡艳波 ; 杨瑷铭
  • 英文作者:Liu Ruihong;Hui Gangying;Zhang Ganggang;Liu Wenzhen;Zhang Gongqiao;Hu Yanbo;Yang Aiming;Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration;Xiaolongshan Research Institute of Forest in Gansu Province,Key Laboratory of Oak Secondary Forest Ecosystem of Gansu Province;
  • 关键词:林分长势 ; 潜在疏密度 ; 潜在最大断面积 ; 立地生产力 ; 林分状态
  • 英文关键词:stand growth;;potential density of stocking;;potential maximum basal area;;site productivity;;stand state
  • 中文刊名:北京林业大学学报
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:中国林业科学研究院林业研究所国家林业局林木培育重点实验室;甘肃小陇山林业实验局林业科学研究所甘肃省栎类次生林生态系统重点实验室;
  • 出版日期:2019-08-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划课题(2016YFD0600203)
  • 语种:中文;
  • 页:17-22
  • 页数:6
  • CN:11-1932/S
  • ISSN:1000-1522
  • 分类号:S758.5
摘要
【目的】林分长势是林分活力的直接体现,疏密度是反映林分密度和长势的重要指标之一。计算疏密度的关键是对标准断面积的准确求算,但在实际应用中标准林分难以判定,标准断面积的可获得性较差,削弱了其可应用性,探求新的指标是解决这一问题的有效途径,因此本研究旨在探究可以替代疏密度的新指标。【方法】一定的立地条件下,林地生产力是有限的,基于最终产量恒定法则,本研究以长期连续监测且经营数表齐全的杉木试验林分为材料,1989年编制的全国分区杉木标准表为参照,以林分内不同比例较大林木个体的平均断面积与全部林木株数的乘积表示林分生长能够达到的潜在最大断面积,即在50%~80%林木株数比例范围内,以5%为梯度,依次比较不同比例较大林木个体所得潜在最大断面积与标准断面积的差值,求使潜在最大断面积与标准断面积偏差率最小时所对应林木株数比例,并以此为基础,分析天然林中林分断面积与潜在最大断面积的关系,检验潜在最大断面积的计算方法在天然林中的适用性。【结果】当较大林木株数占总株数比例为70%时,所有试验样地的潜在最大断面积与标准断面积的偏差最小,均在±10%左右,此时,潜在疏密度与疏密度的差值最小;天然林中70%较大林木个体断面积之和与林分断面积呈显著线性关系,故可用70%较大个体的平均断面积与总株数乘积作为潜在最大断面积,来求算潜在疏密度。【结论】林分潜在最大断面积可以70%较大林木个体平均断面积与林木总株数的乘积表示,所求潜在疏密度可替代疏密度来表征林分长势。
        [Objective] Stand growth is a direct reflection of stand vitality, density of stocking is one of the most commonly used indices to reflect the degree of closeness and its growth status in a stand. Accurate calculation of standard basal area is the key to calculate density of stocking, but it has poor availability and applicability because of the difficulty to distinguish standard stand among all stands of an area. exploring an alternative index is an effective way to solve this problem. Therefore, the purpose of this study is to find the new index. [Method] The potential productivity of a forest is finite under certain site conditions. Based on the Law of Constant Ultimate Capacity, in this study, we analyzed Cunninghamia lanceolata plantations under continuous monitoring with its growth process data all in readiness, with Cunninghamia lanceolata standard tables, which compiled in 1989 as cross reference. The potential maximum basal area of the stand was expressed by the product of the average basal area of a certain percentage of larger individuals and the total number of trees in the stand. Comparing the proportion from 50%-80% at 5% interval, we seek to find the ratio when the deviation rate between the potential maximum basal area and standard basal area was at its minimal value, and analyzed the applicability of potential maximum basal area in natural forests on this basis. [Result] the results suggested when the proportion was 70%, the deviation rate between the potential maximum basal area and the standard basal area of all test plots was about ± 10%, and the difference between the potential density of stocking and the density of stocking was at its minimal value. Furthermore,in order to test the applicability to natural forests, statistical analysis indicated that there was a significant linear relationship between the basal area with 70% as the larger trees and the stand basal area in the natural forest. The results showed that the potential density of stocking of a stand could be calculated by the product of the average basal area with 70% as the larger trees and the total number of trees. [Conclusion] The potential maximum stand basal area could be expressed as the product of the average basal area with 70% as the larger trees and the total number of trees. The potential density of stocking, as an alternative index, can replace the density of stocking to characterize density and growth status of a stand.
引文
[1]惠刚盈,张弓乔,赵中华,等.天然混交林最优林分状态的π值法则[J].林业科学, 2016, 52(5):1-8.Hui G Y, Zhang G Q, Zhao Z H, et al. A new rule ofπvalue of natural mixed forest optimal stand state[J]. Scientia Silvae Sinicae, 2016, 52(5):1-8.
    [2]赵中华,惠刚盈,胡艳波,等.基于大小比数的林分空间优势度表达方法及其应用[J].北京林业大学学报, 2014, 36(1):78-82.Zhao Z H, Hui G Y, Hu Y B, et al. Method and application of stand spatial advantage degree based on the neighborhood comparison[J]. Journal of Beijing Forestry University, 2014,36(1):78-82.
    [3]Graz F P, Gadow K V. Application of a “stem number guide curve” for sustainable harvest control in the dry woodland savanna of northern Namibia[J]. Journal of the South African Forestry Association, 2005, 204(1):37-44.
    [4]甄学宁.马尾松和杉木用材林基准林分的探讨[J].森林与环境学报, 1995, 15(2):146-150.Zhen X N. Probe into the problems of the Quasi-standard stand of Pinus massoniana and Cunninghamia lanceolata timber forest[J]. Journal of Forest and Environment, 1995, 15(2):146-150.
    [5]杜纪山,李悦黎.混交林疏密度的计算[J].陕西林业科技,1992(1):32-35.Du J S, Li Y L. Calculation of the density for mixed forest[J].Shaanxi Forest Science and Technology, 1992(1):32-35.
    [6]段爱国,张建国,孙洪刚,等.林分断面积生长模拟理论与技术研究[J].世界林业研究, 2013, 26(2):43-47.Duan A G, Zhang J G, Sun H G, et al. Research progress of growth simulation theories and technologies for stand basal area[J]. World Forestry Research, 2013, 26(2):43-47.
    [7]Hui G Y. Wuchsmodelle fuer die Baumart Cunninghamia lanceolata[D]. G?ttingen:Cuvillier Verlag G?ttingen, 1998.
    [8]孙洪刚.杉木人工林断面积生长规律及动态模拟[D].北京:中国林业科学研究院, 2008.Sun H G. Basal area growth and model prediction in Cunninghamia lanceolata Plantation[D]. Beijing:Chinese Academy of Forestry, 2008.
    [9]张雄清,张建国,段爱国.基于贝叶斯法估计杉木人工林树高生长模型[J].林业科学, 2014, 50(3):69-75.Zhang X Q, Zhang J G, Duan A G. Tree-height growth model for Cunninghamia lanceolata plantation based on bayesian method[J]. Scientia Silvae Sinicae, 2014, 50(3):69-75.
    [10]童书振,刘景芳.全国杉木断面积、蓄积量标准表的编制[J].林业科技通讯, 1989, 10(8):9-11.Tong S Z, Liu J F. Establishment of national standard table for basal area and volume of Cunninghamia lanceolata[J]. Forest Science and Technology, 1989, 10(8):9-11.
    [11]杜纪山,唐守正.林分断面积生长模型研究评述[J].林业科学研究, 1997, 10(6):599-606.Du J S, Tang S Z. The review of studies on stand basal area growth model[J]. Forest Research, 1997, 10(6):599-606.
    [12]Bennett F A, Clutter J L. Multiple-product yield estimates for unthinned slash pine plantations[M]. New York:NTIS United States, 1983:71-72
    [13]Rodríguez F, Pemán J, Aunósá. A reduced growth model based on stand basal area:a case for hybrid poplar plantations in northeast Spain[J]. Forest Ecology&Management, 2010,259(10):2093-2102.
    [14]惠刚盈,赵中华,胡艳波,等.我国西北主要天然林经营模式设计[J].林业科学研究, 2016, 29(2):155-161.Hui G Y, Zhao Z H, Hu Y B, et al. Management models for natural forests in northwestern China[J]. Forest Research, 2016,29(2):155-161.
    [15]H·萨利科夫, B·阿什梅特科夫,邓钦生,等.按优势木平均胸径及冠径确定标准断面积[J].华东森林经理, 1990, 4(2):47-49.Vladimir S H, Ashmetkov B, Deng Q S, et al. Standard basal area determined by mean DBH and crown diameter of dominant trees[J]. East China Forest Management, 1990, 4(2):47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700