用户名: 密码: 验证码:
生理盐水实验性干预对肉鸡盲肠微生物区系和短链脂肪酸含量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of experimental intervention with normal saline on the microflora and short-chain fatty acid content in the cecum of broilers
  • 作者:宫玉杰 ; 邹晓庭 ; 肖英平 ; 夏文锐 ; 温雪婷 ; 杨华
  • 英文作者:GONG Yujie;ZOU Xiaoting;XIAO Yingping;XIA Wenrui;WEN Xueting;YANG Hua;College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, Key Laboratory of Molecular Animal Nutrition, Ministry of Education;Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences;
  • 关键词:肉鸡 ; 微生物 ; 干预 ; 生理盐水 ; 盲肠 ; 短链脂肪酸
  • 英文关键词:broilers;;microflora;;intervention;;normal saline;;cecum;;short-chain fatty acid
  • 中文刊名:中国实验动物学报
  • 英文刊名:Acta Laboratorium Animalis Scientia Sinica
  • 机构:浙江大学动物科学学院浙江省饲料与动物营养重点实验室农业部(华东)动物营养与饲料重点实验室浙江大学动物分子营养学教育部重点实验室;浙江省农业科学院农产品质量标准研究所;
  • 出版日期:2018-12-21 15:50
  • 出版单位:中国实验动物学报
  • 年:2019
  • 期:01
  • 基金:国家重点研发计划项目(2017YFD0500501)~~
  • 语种:中文;
  • 页:44-51
  • 页数:8
  • CN:11-2986/Q
  • ISSN:1005-4847
  • 分类号:S852.6
摘要
目的研究生理盐水实验性干预对肉鸡盲肠微生物区系和短链脂肪酸含量的影响,以期为早期菌群干预实验的研究提供一定的理论依据。方法选取80只初出壳的小鸡,随机分为2组,分别为对照组(C组)和生理盐水组(S组)。出壳后前2 d,连续每天给S组小鸡灌服0.5 mL灭菌的生理盐水,C组不做处理。第3天,第7天于两组分别随机挑选8只鸡,测定其体重后屠宰取其盲肠内容物,采用Illumina Miseq高通量测序技术对盲肠内容物菌群结构进行测定,并用气相色谱法测定盲肠内容物中短链脂肪酸的含量。结果生理盐水实验性干预对肉鸡早期阶段的平均日增重无显著影响(P>0.05)。在门的水平上,两组肉鸡盲肠菌群占比基本相似,厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)为早期肉鸡肠道内的优势菌门。在属的水平,3日龄时S组肉鸡盲肠中拟杆菌属(Bacteroides)和蓝细菌属(Cyanobacteria_norank)的相对丰度较C组分别提高了160%和143%(P<0.05);7日龄时,两组间盲肠菌属的相对丰度无显著差异。此外,生理盐水实验性干预可极显著降低3日龄肉鸡盲肠内容物中乙酸、丁酸和异戊酸的含量(P<0.01),但7日龄时两组肉鸡盲肠内容物中短链脂肪酸的含量无显著差异(P>0.05)。结论生理盐水实验性干预会对3日龄肉鸡盲肠菌群结构及短链脂肪酸含量产生一定的影响,但这种影响不具有持续性,随着日龄的增加会逐渐消失。
        Objective The aim of this experiment was to explore the effects of experimental intervention with normal saline on the microflora and short-chain fatty acid content in the cecum of broilers, and provide a theoretical basis for research on targeted regulation of the early intervention technique for broilers. Methods Eighty newly hatched chickens were randomly divided into two groups, namely the control group(group C) and the saline group(group S). The chickens in the group S were orally inoculated with 0.5 mL of sterilized saline on the first two days after hatching, while the chickens in the group C were not treated with anything. Eight chickens from each group were randomly selected, weighed and their cecal contents were collected on days 3 and 7. Illumina Miseq high-throughput sequencing technology was used to determine the microfloral structure of the cecal content. The short-chain fatty acids contents in the ceca of broilers were determined by gas chromatography. Results Experimental intervention with normal saline showed no significant effect on the average daily weight gain of broilers in early developmental stages(P > 0.05). At the phylum level, the cecal flora profiles were similar between the two groups. Firmicutes, Proteobacteria and Bacteroidetes were the predominant phyla in the broiler ceca. At the genus level, compared with the group C, the relative abundance of Bacteroides and Cyanobacteria were increased by 160% and 143%, respectively, at the age of 3 days(P < 0.05). There was no significant difference in the relative abundance of cecal flora between the two groups at the age of 7 days. Furthermore, experimental intervention with normal saline dramatically reduced the acetic acid, butyric acid and isovaleric acid contents in the ceca of broilers aged 3 days(P< 0.01). However, no significant difference was found at the age of 7 days(P > 0.05). Conclusions Experimental intervention with normal saline has an effect on the microflora and short-chain fatty acid contents in the ceca of broilers aged 3 days, but this effect is transient and may gradually disappear with increasing age.
引文
[1] Mead GC. Prospects for ‘competitive exclusion’ treatment to control salmonellas and other foodborne pathogens in poultry [J]. Vet J, 2000, 159(2):111-123.
    [2] Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins [J]. Nature, 2009, 457(7228):480-484.
    [3] Thompson CL, Wang B, Holmes AJ. The immediate environment during postnatal development has long-term impact on gut community structure in pigs [J]. ISME J, 2008, 2(7):739-748.
    [4] Baldwin S, Hughes RJ, Hao Van TT, et al. At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota [J]. PLoS One, 2018, 13(3): e0194825.
    [5] Stanley D, Geier MS, Hughes RJ, et al. Highly variable microbiota development in the chicken gastrointestinal tract [J]. PLoS ONE, 2013, 8: e84290.
    [6] Yin Y, Lei F, Zhu L, et al. Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression[J]. ISME J, 2010, 4(3):367-376.
    [7] 高天舒,吴纪经,吴英华.酵母菌多糖对肉用仔鸡肠道菌群的影响 [J]. 中国比较医学杂志, 1997(4): 231-234.Gao TS,Wu JJ,Wu YH. Effects of yeast polysaccharides on intestinal flora of broiler chickens [J]. Chin J Comp Med, 1997(4):231-234.
    [8] Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity [J]. Nature, 2012, 488(7413):621-626.
    [9] Mancabelli L, Ferrario C, Milani C, et al. Insights into the biodiversity of the gut microbiota of broiler chickens [J]. Environ Microbiol, 2016, 18(12): 4727-4738.
    [10] Stanley D, Hughes RJ, Moore RJ. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease [J]. Appl Microbiol Biotechnol, 2014, 98(10): 4301-4310.
    [11] Qu A, Brulc JM, Wilson MK, et al. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome [J]. PLoS One, 2008, 3(8): e2945.
    [12] Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome [J]. Poult Sci, 2013, 92(3): 671-683.
    [13] Oakley BB, Lillehoj HS, Kogut MH, et al. The chicken gastrointestinal microbiome [J]. FEMS Microbiol Lett, 2014, 360(2): 100-112.
    [14] 陈孝天,彭三妹,王博林,等.PCR-DGGE检测溃疡性结肠炎大鼠胃肠道中细菌多样性研究 [J]. 浙江临床医学, 2014(4): 512-515.Chen XT,Peng SM,Wang BL,et al. Detection of bacterial diversity in the gastrointestinal tract of rats with ulcerative colitis by PCR-DGGE [J]. Zhejiang Clin Med J, 2014(4): 512-515.
    [15] 蒋曼,姚萍,杨涛,等.实时荧光定量PCR法研究溃疡性结肠炎患者肠道双歧杆菌属、柔嫩梭菌属及拟杆菌属量的变化 [J]. 中国微生态学杂志, 2013, 25(11): 1245-1249+1254.Jiang M,Yao P,Yang T,et al. Real-time fluorescence quantitative-PCR analysis of the variation of Bifidobacterium spp, Faecalibacterium prausnitzii and Bacteroides in patients with ulcerative colitis [J]. Chin J Microecol, 2013, 25(11):1245-1249+1254.
    [16] Perkerson Iii RB, Johansen JR, Kovácik L, et al. A unique pseudanabaenalean (cyanobacteria) genus nodosilinea gen. nov. based on morphological and molecular data [J]. J Phycol, 2011, 47(6):1397-1412.
    [17] Amin A, Ahmed I, Salam N, et al. Diversity and distribution of thermophilic bacteria in hot springs of Pakistan [J]. Microb Ecol, 2017, 74(1):116-127.
    [18] Marounek M, Suchorska O, Savka O. Effect of substrate and feed antibiotics on in vitro production of volatile fatty acids and methane in caecal contents of chickens [J]. Anim Feed Sci Technol, 1999, 80(3-4): 223-230.
    [19] Eswaran S, Muir J, Chey WD. Fiber and functional gastrointestinal disorders [J]. Am J Gastroenterol, 2013, 108(5):718-727.
    [20] 蒋小丰,方热军.丁酸在动物体内的作用 [J]. 饲料工业, 2008, 29(20):51-54.Jiang XF,Fang RJ. The role of butyric acid in animals [J]. Feed Ind, 2008, 29(20):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700