用户名: 密码: 验证码:
手性等离激纳米晶制备技术的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the Preparation of Chiral Plasmonic Nanocrystals
  • 作者:郑广超 ; 谢娟 ; 王申丽 ; 梁二军
  • 英文作者:ZHENG Guangchao;XIE Juan;WANG Shenli;LIANG Erjun;School of Physics and Engineering,Zhengzhou University;College of Food Science and Nutrition Engineering,China Agricultural University;
  • 关键词:手性等离激纳米晶 ; 分子/软模板组装 ; 核-壳型手性等离激纳米晶 ; 螺旋型手性等离激纳米晶 ; 手性光学活性
  • 英文关键词:Chiral plasmonic nanocrystals;;Molecular/soft template assembly;;Core-shell chiral plasmonic nanocrystals;;Helical chiral plasmonic nanocrystals;;Chiroptical activity
  • 中文刊名:光散射学报
  • 英文刊名:The Journal of Light Scattering
  • 机构:郑州大学物理工程学院;中国农业大学食品科学与营养工程学院;
  • 出版日期:2019-09-15
  • 出版单位:光散射学报
  • 年:2019
  • 期:03
  • 基金:郑州大学青年拔尖人才项目(No.32310218);; 国家自然科学基金项目(No.10974183,11574276);; 河南省博士后科研启动项目(No.1902014)
  • 语种:中文;
  • 页:21-33
  • 页数:13
  • CN:51-1395/O4
  • ISSN:1004-5929
  • 分类号:TB383.1
摘要
生命体中大部分生物分子都具有手性。生物分子的手性构象与等离激纳米晶的局域表面等离激共振(LSPR)通过偶极子-偶极子耦合作用,在其LSPR的位置会诱导出一个新的圆二色吸收光谱,具有这种光学活性的等离激纳米晶称为手性等离激纳米晶。手性等离激纳米晶的光学响应信号的稳定性和可重复性都比较高,广泛应用在生物传感、化学传感、圆偏振器、光催化、癌症治疗等领域。手性等离激纳米晶的制备技术一直是该领域的研究热点。然而,通过将手性分子直接吸附在等离激纳米晶表面的方式所诱导的手性光学响应信号非常弱,故本综述聚焦于手性等离激纳米晶的其他制备技术,包括通过手性分子或者软模板组装技术获得手性等离激超结构;湿化学法将手性分子嵌入到单个纳米晶当中制备出核-壳型手性等离激纳米晶,或者将手性分子的手性构象传递到无机纳米材料的结构当中制备出单个螺旋型手性等离激纳米晶等。基于目前对手性等离激纳米晶的最新研究进展,对其纳米制备技术作了进一步的总结和展望。
        Most of the biomolecules in living organisms are chiral. The chiral conformation of biomolecules can be transferred to plasmonic nanocrystals via coupling with its localized surface plasmon resonance(LSPR),inducing a new circular dichroic peak at the LSPR position of plasmonic nanocrystals. In this review,chiral plasmonic nanocrystal is defined as they can possess the chiroptical activity. Because of its high stability and reproducible chiroptical response signal,chiral plasmonic nanocrystals have attracted great attention from basic science to applications. So far,synthesis of chiral plasmonic nanocrystals have always been hot topic in the numerous fields,such as,bio-/chemical sensing,circular polarizers,photocatalysis,cancer treatment,etc. In this review,chiral molecules on the surface of plasmonic nanocrystals inducing chiroptical response are not discussed because their weak coupling strength leads to weak chiroptical activity. We will focus on the recent fabrication technologies of chiral plasmonic nanocrystals,including(i) self-assembly of achiral plasmonic nanocrystals by chiral molecules or soft templates;(ii) chiral molecules encapsulation into a single nanocrystal is to make core-shell chiral plasmonic nanocrystal;(iii) chiral conformation of chiral molecules transferring to the structure of plasmonic nanocrystals is to fabricate a single helical chiral plasmonic nanocrystal. Finally,we have summarized and prospected the synthetic nanotechnology of chiral plasmonic nanocrystals based on the recent research achievements.
引文
[1] Sun M T,Zhang Z L,Wang P J,et al. Remoetely excited Raman optical activity using chiral plasmon propagation in Ag wires[J]. Light Sci Appl,2013,2:e112.
    [2] Zhou C,Duan X Y,Liu N. DNA-Nanotechnology-Enabled Chiral Plasmonics:from static to dynamic[J].Accounts Chem Res,2017,50:2906.
    [3] Zheng G C,Wang J,Kong L T,et al. Cellular-like gold nanofeet:synthesis,functionalization,and surface enhanced fluorescence detection for mercury contaminations[J]. Plasmonics,2012,7:487.
    [4] Li D D,Zheng G C,Jia H W,et al. Direct readout SERS multiplex sensing of pesticides via gold nanoplate-in-shell monolayer substrate[J]. Colloid Surface A,2014,451:48.
    [5] Zheng G C,De Marchi S,Lopez-Puente V,et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility[J].Small,2016,12:3935.
    [6]徐燕慧,崔颜,刘必聚,等.干净、均一的表面增强拉曼基底的制备和表征[J].光散射学报,2010,21:295-299(Xu Yanhui,CUI Yan,LIU Biju. Preparation and characterization of clean and uniform substrates for surface-enhanced Raman scattering[J]. J Light Scattering,2009,21:295)
    [7]张春威,范春珍,朱双美,等.半胱氨酸修饰金纳米棒光学性质的研究[J].光散射学报,2014,26:54-58(ZHANG Chunwei,FAN Chunzhen,ZHU Shuangmei. Research on the optical properties of cysteine modified gold nanorods[J]. J Light Scattering,2014,26:54)
    [8]胡建强,张勇,任斌,等.不同形状的金纳米粒子的表面增强拉曼光谱[J].光散射学报,2003,15:63-65(HU Jianqiang,ZHANG Yong,REN Bin. Surface-enhanced Raman spectroscopic study of gold nanoparticles with different shapes[J]. J Light Scattering,2003,15:63)
    [9] Polavarapu L,Mourdukoudis S,Pastoriza-Santos I,et al. Nanocrystal engineering of noble metals and metal chalcogenides:controlling the morphology,composition and crystallinity[J]. Crystengcomm,2015,17:3727.
    [10] Zheng G C,Polavarapu L,Liz-Marzan L M,et al. Gold nanoparticle-loaded filter paper:a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering[J]. Chem Commun 2015,51:4572.
    [11]王翔,黄声超,张檬,等.表面等离激辅助反应及其表征研究进展[J].光散射学报,2018,30:297-307(WANG Xiang,HUANG Shengchao,ZHANG Meng. The advance for the field of surface plasmon assisted reactions and related characterization[J]. J Light Scattering,2018,30:297)
    [12]陈诚,解启文,黄方志,等.金纳米棒调控组装结构SERS基底用于构筑毒品检测模块[J].光散射学报,2018,30:17(CHEN Cheng,XIE Qiwen,HUANG Fangzhi. Regulatory assembly of gold nanorods SERS substrates for fabrication of drug detection module[J].J Light Scattering,2018,30:17)
    [13]张佳,牧凯军,王俊俏,等.等离子体纳米结构中的Fano共振效应及其应用[J].光散射学报,2017,29:1-7(ZHANG Jia,MU Kaijun,WANG Junqiao. Fano resonance in plasmonic nanostructures and its applications[J]. J Light Scattering,2017,29:1)
    [14]杨志林,李秀燕,胡建强,等.金纳米粒子光学性质中的尺寸和形状效应[J].光散射学报,2003,15:1(YANG Zhilin,LI Xiuyan,HU Jianqiang. The size and shape effect on the optical properties of gold nanoparticles[J]. J Light Scattering,2003,15:1)
    [15] Zhao Y,Yang Y X,Zhao J,et al. Dynamic chiral nanoparticle assemblies and specific chiroplasmonic analysis of cancer cells[J]. Advanced materials,2016,28:4877.
    [16] Jiang S,Chekini M,Qu Z B,et al. Chiral ceramic nanoparticles and peptide catalysis[J]. J Am Chem Soc,2017,139:13701.
    [17] Lee H E,Ahn H Y,Mun J,et al. Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles[J]. Nature,2018,556:360.
    [18] Ma W,Xu L G,De Moura A F,et al. Chiral inorganic nanostructures[J]. Chem Rev 2017,117:8041.
    [19] Wu X L,Hao C L,Kumar J,et al. Environmentally responsive plasmonic nanoassemblies for biosensing[J].Chem Soc Rev,2018,47:4677.
    [20] Gregory Schaaff T,Whetten Robert L. Giant gold-Glutathione cluster compounds:? intense optical activity in metal-based transitions[J]. J. Phys. Chem. B,2000,104:2630.
    [21] Kumar J,Liz-Marzan L M. Recent advances in chiral plasmonics-towards biomedical applications[J]. B Chem Soc Jpn,2019,92:30.
    [22] Han B,Zhu Z N,Li Z T,et al. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies[J]. J Am Chem Soc,2014,136:16104.
    [23] Lu J,Chang Y X,Zhang N N,et al. Chiral plasmonic nanochains via the self-Assembly of gold nanorods and helical glutathione oligomers facilitated by cetyltrimethylammonium bromide micelles[J]. Acs Nano 2017,11:3463.
    [24] Ben-Moshe A,Govorov A O,Markovich G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals[J]. Angew Chem Int Edit,2013,52:1275.
    [25] Wang X A,Tang Z Y. Circular dichroism studies on plasmonic nanostructures[J]. Small,2017,13:1601115.
    [26] Li D D,Wang J,Zheng G C,et al. A highly active SERS sensing substrate:core-satellite assembly of gold nanorods/nanoplates[J]. Nanotechnology,2013,24:235502.
    [27] Cortes E,Xie W,Cambiasso J,et al. Plasmonic hot electron transport drives nano-localized chemistry[J].Nat Commun,2017,8:4889.
    [28] Govorov A O,Fan Z Y,Hernandez P,et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals:plasmon enhancement,dipole interactions,and dielectric effects. Nano Lett,2010,10:1374.
    [29] Hentschel M,Schaferling M,Duan X Y,et al. Chiral plasmonics[J]. Sci Adv,2017,3:e1602735.
    [30] Tian X R,Fang Yr,Sun M T. Formation of enhanced uniform chiral fields in symemetric dimer nanostructures[J]. SCI REP,2015,5:17534.
    [31] Grzelczak M,Perez-Juste J,Mulvaney P,et al. Shape control in gold nanoparticle synthesis[J]. Chem Soc Rev,2008,37:1783.
    [32] Pastoriza-Santos I,Kinnear C,Perez-Juste,et al. Plasmonic polymer nanocomposites[J]. Nat Rev Mater,2018,3:375.
    [33] Xu L G,Gao Y F,Kuang H,et al. MicroRNA-directed intracellular self-assembly of chiral nanorod dimers[J]. Angew Chem Int Edit,2018,57:10544.
    [34] Wu X L,Xu L G,Liu L Q,et al. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis[J]. J Am Chem Soc,2013,135:18629.
    [35] Zhao Y,Xu L G,Ma W,et al. Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection[J]. Nano Lett,2014,14:3908.
    [36] Gao F L,Sun M Z,Ma W,et al. Singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly[J]. Adv Mater,2017,29:1606864.
    [37] Zhu Z N,Liu W J,Li Z T,et al. Manipulation of collective optical activity in one-dimensional plasmonic assembly[J]. Acs Nano,2012,6:2326.
    [38] Funck T,Nicoli F,Kuzyk A,et al. Sensing picomolar concentrations of RNA using switchable plasmonic chirality[J]. Angew Chem Int Edit,2018,57:13495.
    [39] Kuzyk A,Schreiber R,Zhang H,et al. Reconfigurable3D plasmonic metamolecules[J]. Nature materials,2014,13:862.
    [40] Kuzyk A,Urban M J,Idili A,et al. Selective control of reconfigurable chiral plasmonic metamolecules[J]. Sci Adv,2017,3:e1602803.
    [41] Guerrero-Martinez A,Auguie B,Alonso-Gomez J L,et al. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas[J]. Angew Chem Int Edit,2011,50:5499.
    [42] Cheng J J,Le Saux G,Gao J,et al. Gold Helix:gold nanoparticles forming 3D helical superstructures with controlled morphology and strong chiroptical property[J]. Acs Nano,2017,11:3806.
    [43] Tamoto R,Lecomte S,Si S,et al. Gold nanoparticle deposition on silica nanohelices:a new controllable 3D substrate in aqueous suspension for optical sensing[J]. J Phys Chem C,2012,116:23143.
    [44] Querejeta-Fernandez A,Chauve G,Methot M,et al.Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals[J]. J Am Chem Soc,2014,136:4788.
    [45] Liljestrom V,Ora A,Hassinen J,et al. Cooperative colloidal self-assembly of metal-protein superlattice wires[J]. Nat Commun,2017,8:671.
    [46] Merg A D,Boatz J C,Mandal A,et al. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity[J]. J Am Chem Soc,2016,138:13655.
    [47] Mokashi-Punekar S,Merg A D,Rosi N L. Systematic adjustment of pitch and particle dimensions within a family of chiral plasmonic gold nanoparticle single helices[J]. J Am Chem Soc,2017,139:15043.
    [48] Kuzyk A,Schreiber R,Fan Z Y,et al. DNA-based selfassembly of chiral plasmonic nanostructures with tailored optical response[J]. Nature,2012,483:311.
    [49] Auguie B,Alonso-Gomez J L,Guerrero-Martinez A,et al. Fingers crossed:optical activity of a chiral dimer of plasmonic Nanorods[J]. J Phys Chem Lett,2011,2:846.
    [50] Lan X,Su Z M,Zhou Y D,et al. Programmable supraassembly of a DNA surface adapter for tunable chiral directional self-Assembly of gold nanorods[J]. Angew Chem Int Edit,2017,56:14632.
    [51] Lan X,Lu X X,Shen C Q,et al. Au nanorod helical superstructures with designed chirality[J]. J Am Chem Soc,2015,137:457.
    [52] Song C Y,Blaber M G,Zhao G P,et al. Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures[J]. Nano Lett,2013,13:3256.
    [53] Kumar J,Erana H,Lopez-Martinez E,et al. Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality[J]. P Natl Acad Sci USA,2018,115:3225.
    [54] Edgar C D,Gray D G. Induced circular dichroism of chiral nematic cellulose films[J]. Cellulose,2001,8:5.
    [55] Querejeta-Fernandez A,Kopera B,Prado K S,et al.Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles[J].Acs Nano,2015,9:10377.
    [56] Zheng G C,Kaefer K,Mourdikoudis S,et al. Palladium nanoparticle-loaded cellulose paper:a highly efficient,robust,and recyclable self-assembled composite catalytic system[J]. J Phys Chem Lett,2015,6:230.
    [57] Schlesinger M,Giese M,Blusch L K,et al. Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose[J]. Chem Commun,2015,51:530.
    [58] Chu G,Wang X S,Chen T R,et al. Optically tunable chiral plasmonic guest-host cellulose films weaved with long-range ordered silver nanowires[J]. Acs Appl Mater Inter,2015,7:11863.
    [59] Campbell M G,Liu Q,Sanders A,et al. Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods[J]. Materials,2014,7:3021.
    [60] Wu X L,Xu L G,Ma W,et al. Gold core-DNA-silver shell nanoparticles with intense plasmonic chiroptical activities[J]. Adv Funct Mater,2015,25:850.
    [61] Hao C L,Xu L G,Ma W,et al. Unusual circularly polarized photocatalytic activity in nanogapped gold-silver chiroplasmonic nanostructures[J]. Adv Funct Mater,2015,25:5816.
    [62] Zheng G C,Rao Z Y,Perez J J,et al. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew Chem Int Edit,2018,57:16452.
    [63] Hao C L,Xu L G,Sun M Z,et al. Chirality on hierarchical self-assembly of Au@Au Ag yolk-shell nanorods into core-satellite superstructures for biosensing in human cells[J]. Adv Funct Mater,2018,28:1802372.
    [64] Guerrero M A,Alonso J L,Auguie B,et al. From individual to collective chirality in metal nanoparticles[J].Nano Today,2011,6:381.
    [65] Jiang W G,Pacella M S,Athanasiadou D,et al. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate[J]. Nat Commun,2017,8:1.
    [66] Nakagawa M,Kawai T. Chirality-controlled syntheses of double-helical Au nanowires[J]. J Am Chem Soc,2018,140:4991.
    [67] Wang P P,Yu S J,Ouyang M. Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality[J]. J Am Chem Soc,2017,139:6070.
    [68] Jiang H J,Zhang L,Chen J,et al. Hierarchical self-assembly of a porphyrin into chiral macroscopic flowers with superhydrophobic and enantioselective property[J]. Acs Nano,2017,11:12453.
    [69] Ge J,Lei J D,Zare R N. Protein-inorganic hybrid nanoflowers[J]. Nat Nanotechnol,2012,7:428.
    [70] Ben M A,Wolf S G,Bar S M,et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules[J]. Nat Commun,2014,5:5302.
    [71] Wang P P,Yu S J,Govorov A O,et al. Cooperative expression of atomic chirality in inorganic nanostructures[J]. Nat Commun,2017,8:14312.
    [72] Mark A G,Gibbs J G,Lee T C,et al. Hybrid nanocolloids with programmed three-dimensional shape and material composition[J]. Nat Mater,2013,12:802.
    [73] Gansel J K,Thiel M,Rill M S,et al. Gold helix photonic metamaterial as broadband circular polarizer[J].Science,2009,325:1513.
    [74] Gonzalez R G,Liz-Marzan L M. A peptide-guided twist of light[J]. Nature,2018,556:313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700