用户名: 密码: 验证码:
地下防护工程空调相变储热水池储热性能实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance of the Phase Change Heat Storage Air-Conditioning Reservoir for Underground Protective Engineering
  • 作者:张洪宇 ; 卢军 ; 庄春龙 ; 黄光勤 ; 余杰 ; 刘亚姣
  • 英文作者:Zhang Hongyu;Lu Jun;Zhuang Chunlong;Huang Guangqin;Yu Jie;Liu Yajiao;Department of Military Facilities,Army Logistic University of PLA;School of Urban Construction and Environmental Engineering,Chongqing University;
  • 关键词:地下防护工程 ; 空调冷却水池 ; 相变材料 ; 相变储热
  • 英文关键词:underground protective engineering;;air-conditioning reservoir;;phase change material;;phase change heat storage
  • 中文刊名:天津大学学报(自然科学与工程技术版)
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:陆军勤务学院军事设施系;重庆大学城市建设与环境工程学院;
  • 出版日期:2019-08-06
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:11
  • 基金:国家重点研发计划资助项目(2017YFC0806305);; 国家自然科学基金资助项目(51706243)~~
  • 语种:中文;
  • 页:83-89
  • 页数:7
  • CN:12-1127/N
  • ISSN:0493-2137
  • 分类号:TK11;TU962
摘要
针对既有地下防护工程传统空调冷却水池储热能力不足,外置冷却塔易造成工程红外暴露而影响工程安全的问题,提出了采用空调相变冷却水池方案以期增强系统储热能力,延长工程隔绝防护条件下空调系统运行保障时间.搭建了地下防护工程空调相变储热水池实验台,研究了定负荷条件下相变储热单元用量、冷却水流量对相变储热水池储热性能的影响;考虑添加相变储热单元对水池储热能力与连续保障能力的影响,提出了地下防护工程空调相变储热水池储热性能评价指标:相变储热水池单位体积储热量和基于出口温度定义的相变储热水池保障效能系数.研究表明:向地下防护工程空调储热水池中加入相变单元能够提升空调储热水池储热能力;与未加入相变储热单元的空调储热水池相比,当相变储热单元体积占空调储热水池有效容积的2.84%、4.26%时,相变储热水池单位体积储热量分别提高了6.35%和9.03%,相变储热水池保障效能系数分别提高了7%和11%,空调系统运行保障时间分别延长了1.77 h和2.82 h;在实验条件下,流速从250 L/h提高至450 L/h时,水池单位体积储热量和保障效能系数均有所降低,大流量工况(450 L/h)下,相变储热单元存在未完全融化,水池储热能力与连续保障能力明显降低,因此在不影响热泵机组正常运行和水池储热性能的情况下,适当降低冷却水流量对空调储热水池储热系统是有益的.
        Aiming for the insufficient thermal storage capability of the traditional air-conditioning reservoir and the problem of engineering safety caused by infrared exposure on the external cooling tower for existing underground protective engineering,the phase change storage reservoir scheme is proposed to strengthen the thermal storage capability and to prolong the run time of the HVAC system under the isolation protection condition. An experiment on the phase change heat storage air-conditioning reservoir was conducted,and the effects of the quantity of the phase change heat storage unit and the water mass flow on the capability of the reservoir are analyzed under the fixed load condition. To analyze the effects of the phase change heat storage unit on the heat storage capacity and continuous safeguarding capacity of the reservoir,the following performance parameters of the phase change heat storage reservoir for underground protective engineering are proposed:Heat storage capacity per unit volume and safeguarding efficiency of the phase change heat storage pool. The results show that adding the phase change heat storage unit can significantly improve the heat storage capacity of the reservoir. Compared with the reservoir without phase change heat storage unit,when the volume of the phase change heat storage unit accounts for 2.84% and 4.26% of the effective volume of the reservoir,the heat storage capacity per unit volume of the phase change heat storage reservoir is increased by 6.35% and 9.03%,the guaranteed efficiency coefficient of the phase change heat storage reservoir is increased by 7% and 11%,and the guaranteed operation time is prolonged by 1.77 h and 2.82 h,respectively. Under the experimental conditions,when the flow rate is increased from 250 L/h to 450 L/h,the heat storage capacity per unit volume and guaranteed efficiency coefficient are both reduced. When the flow rate is high(450 L/h),the phase change heat storage units do not melt completely and the heat storage capacity and guaranteed continuous capacity of the pool are significantly reduced. Therefore,properly reducing the cooling water flow rate is beneficial to the heat storage system of the reservoir without affecting the operation of the heat pump unit and the heat storage performance of the reservoir.
引文
[1]訾冬毅,缪小平,刘文杰.蒸发式冷凝器在地下工程中的应用[J].制冷与空调,2009,9(3):36-40.Zi Dongyi,Liao Xiaoping,Liu Wenjie.Application of evaporative condenser into underground project[J].Refrigeration and Air-Conditioning,2009,9(3):36-40(in Chinese).
    [2]周涤生,李祥麟.地下冷却塔在外滩观光隧道中的应用[J].上海建设科技,2002,93(3):20-21.Zhou Disheng,Li Xianglin.Application of underground cooling tower in the Bund sightseeing tunnel[J].Shanghai Construction Technology,2002,93(3):20-21(in Chinese).
    [3]冯爽.地下式冷却塔设计实例及其发展前景[J].地下工程与隧道,2004,18(14):46-52.Feng Shuang.Design and development of underground cooling tower[J].Underground Engineering and Tunnel,2004,18(14):46-52(in Chinese).
    [4]王晋生.防护工程冷凝热处理过程作用机理及设计理论研究[D].南京:解放军理工大学,2009.Wang Jinsheng.Study on Mechanism and Design Theory of Condensation Heat Treatment Process in Protective Engineering[D].Nanjing:PLA University of Science and Technology,2009(in Chinese).
    [5]王晋生,刘文杰,蔡浩,等.地下蓄冷防护型冷却塔[J].制冷与空调(四川),2010,24(5):1-5.Wang Jinsheng,Liu Wenjie,Cai Hao,et al.Underground thermal storage defensive cooling tower[J].Refrigeration&Air Conditioning,2010,24(5):1-5(in Chinese).
    [6]刘文杰.防护工程冷凝热处理模式及相关设备研究[D].南京:解放军理工大学,2009.Liu Wenjie.Research on Condensation Heat Treatment Mode and Related Equipment of Protective Engineering[D].Nanjing:PLA University of Science and Technology,2009(in Chinese).
    [7]何叶从,邹国荣,肖益民,等.间接蒸发冷却用气-水雾化喷嘴特性器实验研究[J].重庆建筑大学学报,2008,30(6):105-109.He Yecong,Zou Guorong,Xiao Yimin,et al.Spray characteristics of a two phase air-water nozzle for indirect evaporative cooling[J].Journal of Chongqing Jianzhu University,2008,30(6):105-109(in Chinese).
    [8]耿世彬,李永,韩旭.水环热泵空调系统在地下工程中的应用[J].解放军理工大学学报:自然科学版,2011,12(2):139-144.Geng Shibin,Li Yong,Han Xu.Water loop heat pump system in underground engineering[J].Journal of PLAUniversity of Science and Technology:Natural Science Edition,2011,12(2):139-144(in Chinese).
    [9]于国清,汤金华,吕静.水-相变材料复合蓄热装置的温度分布模型研究[J].流体机械,2009,37(11):65-68.Yu Guoqing,Tang Jinhua,LüJing.Research on temperature stratification model of water-PCM hybrid thermal storage[J].Fluid Machinery,2009,37(11):65-68(in Chinese).
    [10]于国清,汤金华,赵慧忠.水-相变材料复合蓄热装置的充放热特性研究[J].流体机械,2010,38(7):59-62.Yu Guoqing,Tang Jinhua,Zhao Huizhong.Research on the thermal charge and discharge of water-PCM hybrid thermal storage[J].Fluid Machinery,2010,38(7):59-62(in Chinese).
    [11]汤金华.太阳能供热系统中水-相变材料复合蓄热研究[D].上海:上海理工大学,2008.Tang Jinhua.Study on Composite Heat Storage of WaterPhase Change Materials in Solar Heating System[D].Shanghai:Shanghai University of Technology,2008(in Chinese).
    [12]铁生年,柳馨.相变材料的腐蚀性与封装材料研究进展[J].材料导报,2016,29(6):138-143.Tie Shengnian,Liu Xin.Research progress of corrosivity of phase change material and relevant packaging materials[J].Material Guide,2016,29(6):138-143(in Chinese).
    [13]Niyas H,Prasad S,Muthukumar P.Performance investigation of a lab-scale latent heat storage prototypeNumerical results[J].Energy Conversion&Management,2017,135(3):188-199.
    [14]Regin A F,Solanki S C,Saini J S.Heat transfer characteristics of thermal energy storage system using PCMcapsules:A review[J].Renewable&Sustainable Energy Reviews,2008,12(9):2438-2458.
    [15]Zheng H,Wang C,Liu Q,et al.Thermal performance of copperfoam/paraffin composite phase change material[J].Energy Conversion and Management,2018,157(2):372-381.
    [16]Niyas H,Rao C R C,Muthukumar P.Performance investigation of a lab-scalelatent heat storage prototypeexperimental results[J].Solar Energy,2017,155(10):971-984.
    [17]Yang J,Yang L,Xu C,et al.Experimental study on enhancement of thermal energy storage with phasechange material[J].Applied Energy,2016,169(5):164-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700