用户名: 密码: 验证码:
EGSB工艺处理高氮废水的影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence Factors of EGSB Process for Treatment of High-nitrogen Wastewater
  • 作者:公彦猛 ; 陆继来 ; 汪彬 ; 操庆 ; 祝建中
  • 英文作者:GONG Yan-meng;LU Ji-lai;WANG Bin;CAO Qing;ZHU Jian-zhong;Jiangsu Key Lab of Environmental Engineering Jiangsu Provincial Academy of Environmental Science;College of Environment Hohai University;
  • 关键词:脱氮 ; F~- ; Ca~(2+) ; 氨氮
  • 英文关键词:Denitrification;;Fluoride ion;;Calcium ion;;Ammonia nitrogen
  • 中文刊名:环境科技
  • 英文刊名:Environmental Science and Technology
  • 机构:江苏省环境工程重点实验室江苏省环境科学研究院;河海大学环境学院;
  • 出版日期:2019-04-15
  • 出版单位:环境科技
  • 年:2019
  • 期:02
  • 基金:江苏省环保科研课题(2016018);; “六大人才高峰”高层次人才项目(JNHB-029)
  • 语种:中文;
  • 页:16-20
  • 页数:5
  • CN:32-1786/X
  • ISSN:1674-4829
  • 分类号:X703
摘要
研究了F~-,Ca~(2+)和氨氮对膨胀颗粒污泥床(EGSB)反应器脱氮效果的影响,结果表明:(1)低质量浓度F~-(20mg/L)对EGSB反应器脱氮效果产生冲击,但经6~8 d后处理能力可恢复至正常水平;(2)适当质量浓度Ca~(2+)(500 mg/L)的加入将促进生化脱氮过程,过高质量浓度Ca~(2+)(1 000 mg/L)的存在将使污泥颗粒中无机钙盐含量增加,破坏反应体系pH值平衡,进而抑制脱氮过程;(3)氨氮对反硝化过程无明显抑制作用,但其加入将使出水TN浓度大幅增加。此外,反应器中约有33%的氨氮被去除,推测为厌氧氨氧化作用所致,相关途径有待进一步验证。
        In this paper,the influence of fluoride ion, calcium ion and ammonia nitrogen on nitrogen removal in EGSB reactor were studied. The results showed that i) The denitrification capability in EGSB reactor was shocked by low concentration of fluoride ion, but the negative effect could be eliminated after 6 ~ 8 days; ii) The addition of proper calcium ion(500 mg/L) would promote the process of biochemical denitrification, while the presence of excess calcium ion(1 000 mg/L)would increase the content of inorganic calcium salt in sludge particles, destroy the pH equilibrium in the reaction system, and finally restrain the denitrification process; iii) Ignorable influence was exhibited on denitrification process by the addition of ammonia nitrogen, but the concentration of total nitrogen in effluent water increased greatly. Besides, there's a great possibility that about 33% of ammonia nitrogen in the reactor was removed by anaerobic ammonia oxidation process, but the relevant approaches need to be verified further more.
引文
[1]张新龙.光伏废水处理工艺试验研究[D].南京:南京理工大学,2015.
    [2]杨婷,张延光.厌氧流化床生物技术处理高硝态氮化工废水[J].环境科技,2018,31(2):46-48.
    [3]廖润华.胁迫条件下EGSB反应器处理高硝态氮废水及其微生物群落与功能研究[D].南京:南京大学,2014.
    [4]左剑恶,王妍春,陈浩.膨胀颗粒污泥床(EGSB)反应器的研究进展[J].中国沼气,2008,18(4):3-8.
    [5]徐亚同.p H值、温度对反硝化的影响[J].中国环境学,1994,14(4):308-313.
    [6]李祥,朱亮,黄勇,等.高含氟的光伏废水反硝化可行性及经济性分析[J].环境科学,2016,37(4):1 467-1 471.
    [7]樊艳丽,孔秀琴,牛佳雪.Ca2+浓度对活性污泥处理系统脱氮效果的影响[J].石油学报,2014,30(5):921-927.
    [8]闫青.EGSB与BAF耦合的废水处理新工艺及其影响因素[D].重庆:重庆大学,2008.
    [9]国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [10]朱佳斌.光伏废水处理工艺试验研究[D].南京:东南大学,2015.
    [11]申欢,金奇庭.高氨氮对厌氧生物法处理城市垃圾渗滤液的影响[J].环境污染治理技术与设备,2005,6(7):40-43.
    [12]赵宗升,刘鸿亮,李炳伟,等.高浓度氨氮废水的高效生物脱氮途径[J].中国给水排水,2001,17(5):24-28.
    [13]TAL Y,WATTS J E M,SCHREIER S B,et al.Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system[J].Aquaculture,2003,215:187-202.
    [14]SUMINO T,ISAKA K,IKUTA H,et al.Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor[J].Journal of bioscience and bioengineering,2006,102(4):346-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700