用户名: 密码: 验证码:
干旱胁迫对云南松苗木生长及碳酸酐酶的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Drought Stress on Growth and Carbonic Anhydrase Activity of Pinus yunnanensis Seedlings
  • 作者:王晓丽 ; 徐志鸿 ; 韦文长 ; 和润喜 ; 陈诗 ; 曹子林
  • 英文作者:WANG Xiao-li;XU Zhi-hong;WEI Wen-chang;HE Run-xi;CHEN Shi;CAO Zi-lin;Southwest Forestry University College of Forestry;Forestry Bureau of Shuangjiang County;Southwest Forestry University College of Ecology and Soil &Water Conservation;
  • 关键词:云南松 ; 苗木形态指标 ; 生物量 ; 碳酸酐酶 ; 干旱胁迫
  • 英文关键词:Pinus yunnanensis;;seedling morphological indexes;;biomass;;carbonic anhydrase;;drought stress
  • 中文刊名:山东农业大学学报(自然科学版)
  • 英文刊名:Journal of Shandong Agricultural University(Natural Science Edition)
  • 机构:西南林业大学林学院;双江县林业局;西南林业大学生态与水土保持学院;
  • 出版日期:2019-02-14 16:28
  • 出版单位:山东农业大学学报(自然科学版)
  • 年:2019
  • 期:01
  • 基金:云南省高校优势特色重点学科(生态学)建设项目(515006083);; “十三五”国家重点研发计划课题项目(2016YFD0600501)
  • 语种:中文;
  • 页:9-14
  • 页数:6
  • CN:37-1132/S
  • ISSN:1000-2324
  • 分类号:S791.257
摘要
以云南松苗木为研究材料,采用称重法控制土壤含水量对苗木进行干旱胁迫,探讨不同干旱胁迫强度对云南松苗木生长形态指标、生物量及碳酸酐酶活性的影响。结果表明:(1)相对于针叶长来说,地径对干旱胁迫更为敏感,程度较小的干旱胁迫即可引起地径生长的显著降低;随着干旱胁迫程度的加大,主根长呈先增加后减小的变化趋势,中度干旱胁迫(T4)是主根长生长的转折点。(2)高强度干旱胁迫对苗木生物量的抑制效应在器官间表现不均衡,苗木根受到的抑制作用更强;中度干旱胁迫(T4)处理时苗木根生物量比最大,同时叶生物量比最小,一定程度的干旱胁迫有利于苗木对根和叶生物量比的调整。(3)随着干旱胁迫强度的增大,苗木根、茎、叶的碳酸酐酶活性皆呈逐渐下降的趋势,方差分析和多重比较表明,可根据根中的碳酸酐酶活性来初步筛选耐旱性更强的优良单株。总之,该年龄段苗木的地径越大、主根长越长、根生物量比越大、根部的碳酸酐酶活性越高,苗木的耐旱能力越强,越有利于苗木在石漠化生境中的成活和生长。
        This study examined the effects of drought stresses on the morphological indexes and carbonic anhydrase activity of Pinus yunnanensis seedlings. The results were as following: 1) The ground diameter was the most sensitive to drought stress compared with the needle length of the seedlings. The low level of drought stress can result in a significant decrease in ground diameter increment. The taproot length increased to maximum at medium treatment and then decrease along the levels of drought stresses. 2) The changes in roots, stems, leaves and total biomasses in P. yunnanensis seedlings generally decreased along the levels of drought stresses. The inhibiting effect of drought stress on root growth was greater than that on stems and leaves. The effect of drought stress on biomass proportion was ranked as leaves > stems ≈ roots. The roots were more sensitive to the increasing drought stress intensity with the highest adjustment of root ratio in the seedlings observed at the treatment of moderate drought stress. Whereas, higher levels of drought stresses were not conducive to the improvement of their resilience in terms of the biomass allocation. 3) The activities of carbonic anhydride in roots, stems and leaves of P.yunnanensis seedlings decreased with the increase of intensity drought stress. The results from variance analysis and multiple comparisons showed that the activity of carbonic anhydrase in roots was an important prediction for the drought tolerance.We concluded that longer taproot length, and higher ground diameter, root biomass, and carbonic anhydrase activity of roots may be important implication for the evaluation of drought-resistant ability, as well as the capacity of survival and growth of P. yunnanensis seedlings in rocky desertification habitat.
引文
[1]王宇,张贵.滇东岩溶石山地区石漠化特征及成因[J].地球科学进展,2003,18(6):933-938
    [2]赖兴会.云南石漠化的生态特征及其危机表现[J].林业调查规划,2004,29(2):80-82
    [3]张云,周跃华,常恩福.云南省石漠化问题初探[J].林业经济,2010(5):72-74
    [4]白晓永,熊康宁,苏孝良,等.喀斯特石漠化景观及其土地生态效应——以贵州贞丰县为例[J].中国岩溶,2005,24(4):276-281
    [5]蔡年辉,李根前.云南松天然林区植物群落结构的空间动态研究[J].西北植物学报,2006,26(10):2119-2124
    [6]潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程-以桂林峰丛洼地岩溶系统为例[J].中国岩溶,1999,18(4):287-295
    [7]Song LH,Liang FY.Distribution of CO2 in soil air affected by vegetationin the shilin national park[J].Acta Geologica Sinica,2000,75(3):288-293
    [8]Tripp BC,Smith K,Ferry JG.Carbonic anhydrase:new insights for an ancient enzyme[J].J Biol Chem,2001,276:48615-48618
    [9]Cronk JD,Endrizzi JA,Cronk MR,et al.Crystal structure of E.coli alpha-carbonic anhydrase,an enzyme with an unusual PH-dependent activity[J].Protein Sci,2001,10:911-922
    [10]Lind SS.Structure and mechanism of carbonic anhydrase[J].Pharmacol Ther,1997,74:1-20
    [11]Kimber MS,Pai EF.The active site architecture of Pisumsativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrase[J].EMBO J,2000,19:1407-1418
    [12]王晓丽,曹子林,和润喜,等.不同pH、温度和储藏因素对云南松针叶碳酸酐酶稳定性的影响[J].云南大学学报:自然科学版,2016,38(3):501-506
    [13]王晓丽,曹子林,和润喜,等.云南松根叶及林内土壤的碳酸酐酶活性分析[J].西南林业大学学报,2016,36(2):31-34
    [14]王倩,支崇远.硅藻碳酸酐酶对石灰岩岩溶的作用及其生态意义[J].上海地质,2007(4):25-27
    [15]蒋春云,马秀灵,沈晓艳,等.植物碳酸酐酶的研究进展[J].植物生理学报,2013,49(6):545-550
    [16]胥献宇.不同温度条件下玉米碳酸酐酶活性差异比较与分析[J].种子,2010,29(3):84-88
    [17]孙卫红,吴秋霞,温新宇,等.干旱胁迫下番茄叶片碳酸酐酶活性的变化[J].植物生理学报,2015,51(4):424-428
    [18]吴沿友,梁铮,刑德科.模拟干旱胁迫下构树和桑树的生理特征比较[J].广西植物,2011,31(1):92-96
    [19]何宣,王白羽,张晓磊,等.盐胁迫下小黑麦碳酸酐酶基因表达及其酶活性分析[J].新疆农业科学,2012,49(7):1197-1202
    [20]陈虎,何新华,罗聪,等.低温胁迫下龙眼碳酸酐酶基因(CA)的克隆与表达分析[J].园艺学报,2012,39(2):243-252
    [21]黄红春,杨志杰,文斌,等.2016年昆明城市绿化植物冻害调查及恢复研究[J].园林科技,2016,142(4):15-22
    [22]李芳兰,包维楷,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报,2009,29(10):5406-5416
    [23]谢志玉,张文辉,刘新成.干旱胁迫对文冠果幼苗生长和生理生化特征的影响[J].西北植物学报,2010,30(5):948-954
    [24]吴沿友,李西腾,郝建朝,等.不同植物的碳酸酐酶活力差异研究[J].广西植物,2006,26(4):366-369
    [25]曾宪东,余龙江,李为,等.西南岩溶地区黄荆叶片碳酸酐酶的稳定性[J].植物学通报,2005,22(2):169-174
    [26]刘明磊.正交试验设计中的方差分析[D].哈尔滨:东北林业大学,2011
    [27]罗传义,时景荣,戴传波.基于Excel的正交试验方差分析程序[J].计算机工程,2002,28(11):240-24
    [28]徐仲安,王天保,李常英,等.正交试验设计法简介[J].科技情报开发与经济,2002,12(5):148-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700