用户名: 密码: 验证码:
不同斥水程度黏壤土一维入渗特性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment on one-dimensional infiltration characteristics of clay loam soil with different water repellency
  • 作者:柴红阳 ; 陈俊英 ; 张林 ; 王嘉瑞 ; 刘畅
  • 英文作者:CHAI Hongyang;CHEN Junying;ZHANG Lin;WANG Jiarui;LIU Chang;College of Water Resources and Architectural Engineering,Northwest A&F University;Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas,Ministry of Education,Northwest A&F University;Institute of Soil and Water Conservation,Northwest A&F University;
  • 关键词:斥水程度 ; 土壤水分入渗 ; 水分再分布 ; 入渗模型
  • 英文关键词:degree of water repellency;;soil water infiltration;;moisture redistribution;;infiltration model
  • 中文刊名:排灌机械工程学报
  • 英文刊名:Journal of Drainage and Irrigation Machinery Engineering
  • 机构:西北农林科技大学水利与建筑工程学院;西北农林科技大学旱区农业水土工程教育部重点实验室;西北农林科技大学水土保持研究所;
  • 出版日期:2018-03-02 10:17
  • 出版单位:排灌机械工程学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金资助项目(51409221,51349001);; 西北农林科技大学基本科研业务费资助项目(2452017116)
  • 语种:中文;
  • 页:86-92
  • 页数:7
  • CN:32-1814/TH
  • ISSN:1674-8530
  • 分类号:S152.7
摘要
采用人工配置的5种斥水程度等级的黏壤土,通过室内一维积水入渗试验,探究了斥水程度对黏壤土湿润锋运移、累积入渗量、入渗率、土壤剖面含水率以及水分再分布的影响,分析了不同斥水程度土壤入渗条件下入渗模型的适用性.结果表明:随着斥水程度增大,土壤入渗率变慢,湿润锋运移相同距离所需要的时间显著增加,其中运移到40 cm时,强斥水土壤比亲水土壤的运移时间增加了63%;随着斥水程度增大,累积入渗量减小,入渗结束时强斥水土壤比亲水土壤的累积入渗量减小了27%;土壤的入渗率也随着斥水程度增大而逐渐减小,强斥水土壤的稳定入渗率为亲水土壤的37%;随着斥水程度增大,土壤剖面含水率减小,且经过相同时间的水分再分布,土壤剖面含水率的变化量也随之减小;幂函数可以很好地模拟湿润锋运移距离和累积入渗量随时间的变化过程;对弱斥水土壤而言,Philip模型和Kostiakov模型对入渗率与时间的关系有较高的拟合度,而强斥水土壤则Kostiakov模型更为适用.研究可为斥水土壤的入渗提供理论基础.
        To explore the effect of water repellency on the infiltration characteristics of clay loam,indoor water infiltration experiment was conducted. There were five kinds of clay loam with different water repellency degrees. The investigated soil water infiltration characteristics included wetting front,infiltration rate,cumulative infiltration,soil moisture and water redistribution. The applicability of three soil infiltration empirical models under different water repellency conditions was analyzed. The results show that the soil infiltration rate is reduced,and the time required for wetting front migration is increased significantly with increasing water repellency. The time for the wetting front to travel the same distance is increased significantly,especially the time for 40 cm travelling distance in soil with strong repellency is 63% longer than that in hydrophilic soil. With increasing water repellency,the cumulative infiltration is reduced and the cumulative infiltration of S4 is decreased by 27% compared with S0 at the end of infiltration. The infiltration rate is also decreased with the increase of water repellency,and the saturated infiltration rate is 37% of that in hydrophilic soil. Both the moisture of soil profile and the change in moisture of redistributed soil profile in the same time are decreased with increasing water repellency. The power function model can simulate the migration process of wet front and the variation of cumulative infiltration with time. For the soil with slight repellence,the Philip model and the Kostiakov model are subject to a better accuracy in fitting the relationship between infiltration rate and time,while the Kostiakov model is even more suitable for the soil with strong repellency. The study can provide a basis for the infiltration theory of repellent soil.
引文
[1]陈俊英,张智韬,汪志农,等.土壤斥水性影响因素及改良措施的研究进展[J].农业机械学报,2010,41(7):84-89,83.CHEN Junying,ZHANG Zhitao,WANG Zhinong,et al. Influencing factors and amelioration of soil water repellency[J]. Transactions of the CSAM,2010,41(7):84-89,83.(in Chinese)
    [2] DEBANO L F. The effect of hydrophobic substances on water movement in soil during infiltration[J]. Soil Science Society of America journal,1971,35(2):340-343.
    [3] BACHMANN J,HORTON R,VAN DER PLOEG R R. Isothermal and nonisothermal evaporation from four sandy soils of different water repellency[J]. Soil Science Society of America journal,2001,65(6):1599-1607.
    [4] RITSEMA C J,DEKKER L W,HENDRICKX J M H,et al. Preferential flow mechanism in a water repellent sandy soil[J]. Water resources research,1993,29(7):2183-2193.
    [5] BAUTERS T W J,DICARLO D A,STEENHUIS T S,et al. Preferential flow in water-repellent sands[J]. Soil Science Society of America journal,1998,62(5):1185-1190.
    [6] DE JONGE L W,JACOBSEN O H,MOLDRUP P. Soil water repellency:effects of water content,temperature,and particle size[J]. Soil Science Society of America journal,1999,63(3):437-442.
    [7] CLOTHIER B E,VOGELER I,MAGESAN G N. The breakdown of water repellency and solute transport through a hydrophobic soil[J]. Journal of hydrology,2000,231/232:255-264.
    [8]宋红阳,李毅,贺缠生.不同质地斥水土壤的入渗模型[J].排灌机械工程学报,2013,31(7):629-635.SONG Hongyang,LI Yi,HE Chansheng. Infiltration models for different textures of water-repellent soils[J].Journal of drainage and irrigation machinery engineering,2013,31(7):629-635.(in Chinese)
    [9]刘春成,李毅,任鑫,等.四种入渗模型对斥水土壤入渗规律的适用性[J].农业工程学报,2011,27(5):62-67.LIU Chuncheng,LI Yi,REN Xin,et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the CSAE,2011,27(5):62-67.(in Chinese)
    [10] WALLACH R,JROTZICK C. Unstable finger-like flow in water-repellent soils during wetting and redistribution—the case of a point water source[J]. Journal of hydrolo-gy,2008,351(1/2):26-41.
    [11] WALLACH R. Effect of soil water repellency on moisture distribution from a subsurface point source[J].Water resources research,2010,46(8):863-863.
    [12] DOERR S H,SHAKESBY R A,WALSH R P D. Soil water repellency:its causes,characteristics and hydrogeomorphoogical significance[J]. Earth-science reviews,2000,51(1/2/3/4):33-65.
    [13] AHMED,M E,VAN GEEL P J,et al. Potential concerns related to using octadecyltrichlorosilane(OTS)in rendering soils and porous ceramics hydrophobic[J].Journal of contaminant hydrology,2009,110(1/2):22-33.
    [14] ZAVALA L M,GRANGED A J P,JORDAN A,et al.Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions[J]. Geoderma,2010,158(3/4):366-374.
    [15] DEKKER L W,DOERR S H,OOSTINDIE K,et al.Water repellency and critical soil water content in a dune sand[J]. Soil Science Society of America journal,2001,65(6):1667-1674.
    [16]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:121-131.
    [17]王全九,来剑斌,李毅.Green-Ampt模型与Philip入渗模型的对比分析[J].农业工程学报,2002,18(2):13-16.WANG Quanjiu,LAI Jianbin,LI Yi. Comparison of Green-Ampt model with Philip infiltration model[J].Transactions of the CSAE,2002,18(2):13-16.(in Chinese)
    [18] KIRKHAM M B. Principles of soil and plant water relations[M]. London, UK:Elsevier Academic Press,2004:145-150.
    [19]杨松,龚爱民,吴珺华,等.接触角对非饱和土中基质吸力的影响[J].岩土力学,2015,36(3):674-678.YANG Song,GONG Aimin,WU Junhua,et al. Effect of contact angle on matric suction of unsaturated soil.[J]. Rock and soil mechanics,2015,36(3):674-678.(in Chinese)
    [20]陈俊英,刘畅,张林,等.斥水程度对脱水土壤水分特征曲线的影响[J].农业工程学报,2017,33(21):188-193.CHEN Junying,LIU Chang,ZHANG Lin,et al. Impact of repellent levels on drainage soil water characteristic curve[J]. Transactions of the CSAE,2017,33(21):188-193.(in Chinese)
    [21] RYE C F,SMETTEM K R J. The effect of water repellent soil surface layers on preferential flow and bare soil evaporation[J]. Geoderma,2017,289:142-149.
    [22]杨松,黄剑锋,罗茂泉,等.斥水性砂土水-气形态及其对斥水-亲水转化的影响分析[J].农业机械学报,2017,48(11):247-252.YANG Song,HUANG Jianfeng,LUO Maoquan,et al.Pore water-air configurations in water repellent sandy soil and its effects on transformation of hydrophilicity to hydrophobicity[J]. Transactions of the CSAM,2017,48(11):247-252.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700