用户名: 密码: 验证码:
俯冲条件下纤蛇纹石的碳酸盐化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbonation of Chrysotile under Subduction Conditions
  • 作者:Mihye ; Kong ; Yongjae ; Lee
  • 英文作者:Mihye Kong;Yongjae Lee;Department of Earth System Sciences, Yonsei University;Center for High Pressure Science and Technology Advanced Research (HPSTAR);
  • 关键词:挥发物 ; 碳循环 ; 蛇纹石 ; 石棉 ; 俯冲带
  • 英文关键词:Volatile;;Carbon cycle;;Serpentine;;Asbestos;;Subduction zone
  • 中文刊名:Engineering
  • 英文刊名:工程(英文)
  • 机构:Department of Earth System Sciences, Yonsei University;Center for High Pressure Science and Technology Advanced Research (HPSTAR);
  • 出版日期:2019-06-15
  • 出版单位:Engineering
  • 年:2019
  • 期:03
  • 基金:supported by the project Crustal Evolution of Victoria Land,Antarctica and Formative Process of Planets(20140409 and PM18030)funded by the Ministry of Ocean and Fisheries,Korea;; the partial supports by the Leader Researcher program(NRF-2018R1A3B1052042)of the Korean Ministry of Science;; ICT and the NRF grant2016K1A4A3914691
  • 语种:中文;
  • 页:299-315
  • 页数:17
  • CN:10-1244/N
  • ISSN:2095-8099
  • 分类号:P578.964
摘要
为了解蛇纹石矿物在全球碳循环中的作用,我们以二氧化碳(CO_2)为压力介质,对蛇纹石[Mg_3-Si_2O_5(OH)_4]进行了高压X射线衍射(XRD)实验研究。同步辐射XRD图谱表明,在170℃和2.5(1) GPa条件下,样品加热1 h后形成了菱镁矿和纤蛇纹石高压相。Rietveld精修结果表明,在菱镁矿形成时,初始的纤蛇纹石晶胞组成变为Mg_(2.4(1))Si_2O_5(OH)_(2.4(1)),这似乎是由于最内层羟基(OH3)的脱氢和M1位置上镁元素的重新排布,从而导致亚稳态单层脱羟基纤蛇纹石的形成。亚稳态纤蛇纹石压力和温度测量至5.0(1) GPa和500℃,这与苏门答腊南部和琉球俯冲带所在的莫霍板块地热温压条件相对应。在恢复到常温常压条件后,最初的纤维状纤蛇纹石已转变为土状。这些结果可以帮助我们了解沿俯冲带分布的深部碳循环作用过程,并可能促使设计利用压力和温度对石棉解毒的一种新方法。
        In order to understand the role of serpentine minerals in the global carbon cycle, high-pressure X-ray diffraction(XRD) experiments were performed on chrysotile(Mg_3Si_2O_5(OH)_4) using carbon dioxide(CO_2) as a pressure medium. Synchrotron XRD patterns revealed the formation of magnesite and high-pressure chrysotile after heating at 170 °C for 1 h at 2.5(1) GPa. The Rietveld refinement suggests that the unit cell composition of the original chrysotile changes to Mg_(2.4(1))Si_2O_5(OH)_(2.4(1))upon the formation of magnesite, which appears to be driven by the dehydrogenation of the innermost hydroxyl group, OH3, and the rearrangement of magnesium(Mg) at the M1 site, leading to the formation of metastable monodehydroxylated chrysotile. Metastable chrysotile is observed up to 5.0(1) GPa and 500 ℃, which corresponds to the slab Moho geotherms for the South Sumatra and Ryukyu subduction zone. After recovery to ambient conditions, the characteristic fibrous morphology of the original chrysotile was found to have changed to an earthy form. These results can help us to understand deep carbon cycling along the subduction zones, and may prompt the design of a novel method of asbestos detoxification using pressure and temperature.
引文
[1]Keil K.Mineralogical and chemical relationships among enstatie chondrites.JGeophys Res 1968;73(22):6945-76.
    [2]Takahashi T,Sutherland SC,Kozyr A.Global ocean surface water partial pressure of CO2database:measurements performed during 1957-2012.Report.Tennessee:Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,US Department of Energy;2012.
    [3]Alt JC,Teagle DAH.The uptake of carbon during alteration of ocean crust.Geochim Cosmochim Acta 1999;63(10):1527-35.
    [4]Charvrit D,Humler E,Grasset O.Mapping modern CO2 fluxes and mantle carbon content all along the mid-ocean ridge system.Earth Planet Sci Lett2014;387:229-39.
    [5]Sleep NH,Zhanle K.Carbon dioxide cycling and implications for climate on ancient Earth.J Geophys Res 2001;106(E1):1373-99.
    [6]Dasgupta R,Hirschmann MM.The deep carbon cycle and melting in Earth’s interior.Earth Planet Sci Lett 2010;298(1-2):1-13.
    [7]Plank P,Langmuir CH.The chemical composition of subducting sediment and its consequences for the crust and mantle.Chem Geol 1998;145(3-4):325-94.
    [8]Staudigel H.Hydrothermal alteration processes in the oceanic crust.In:Holland HD,Turekian KK,editors.Treatise on geochemistry.Oxford:ElsevierPergamon;2003.p.511-35.
    [9]Shilobreeva S,Martinez I,Busigny V,Agrinier P,Laverne C.Insights into C and H storage in the altered oceanic crust:results from ODP/IODP Hole 1256D.Geochim Cosmochim Acta 2011;75(9):2237-55.
    [10]Debret B,Koga KT,Cattani F,Nicollet C,den Bleeken GV,Tchwartz S.Volatile(Li,B,F and Cl)mobility during amphibole breakdown in subduction zones.Lithos 2016;244:165-81.
    [11]Power IM,Wilson SA,Dipple GM.Serpentinite carbonation for CO2sequestration.Elements 2013;9(2):115-21.
    [12]Poli S,Schmidt MW.Water transport and release in subduction zones:experimental constraints on basaltic and andesitic systems.J Geophys Res1995;100(B11):22299-314.
    [13]Wunder B,Schreyer W.Antigorite:high pressure stability in the system MgO-SiO2-H2O(MSH).Lithos 1997;41(1-3):213-27.
    [14]Grove TL,Till CB,Lev E,Chatterjee N,Médard E.Kinematic variables and water transport control the formation and location of arc volcanoes.Nature2009;459(7247):694-7.
    [15]Magni V,Bouilhol P,van Hunen J.Deep water recycling through time.Geochem Geophys Geosyst 2014;15(11):4203-16.
    [16]Molina JF,Poli S.Carbonate stability and fluid composition in subducted oceanic crust:an experimental study on H2O-CO2-bearing basalts.Earth Planet Sci Lett 2000;176(3-4):295-310.
    [17]Kerrick DM,Connolly JAD.Metamorphic devolatilization fo subducted midocean ridge matabasalts:implications for seismicity,arc magmatism and volatile recycling.Earth Planet Sci Lett 2001;189(1-2):19-29.
    [18]Kiseeva ES,Yaxley GM,Hermann J,Litasov KD,Rosenthal A,Kamenetsky VS.An experimental study of carbonated eclogite at 3.5-5.5 GPa-implications for silicate and carbonate metasomatism in the cratonic mantle.J Petrol2012;53:727-59.
    [19]Dorogokupers PI.Equation of state of magnesite for the conditions of the Earth’s lower mantle.Geochem Int 2007;45(6):561-8.
    [20]Ulmer P,Trommsdorff V.Phase relations of hydrous mantle subducting to 300km.In:Fei Y,Bertka CM,Mysen BO,editors.Mantle petrology:field observations and high pressure experimentation.Houston:Geochemical Society Special Publication;1999.p.259-81.
    [21]Bostock MG,Hyndman RD,Rondenay S,Peacock SM.An inverted continental Moho and serpentinization of the forearc mantle.Nature 2002;417(6888):536-8.
    [22]Rupke LH,Morgan JP,Hort M,Connolly JAD.Serpentine and the subduction zone water cycle.Earth Planet Sci Lett 2004;223(1-2):17-34.
    [23]Fryer P,Ambos EL,Hussong DM.Origin and emplacement of Mariana forearc seamounts.Geology 1985;13(11):774-7.
    [24]Guillot S,Hattori K,de Sigoyer J,Nagler T,Auzende AL.Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites.Earth Planet Sci Lett 2001;193(1-2):115-27.
    [25]Dobson DP,Meredith PG,Boon SA.Simulation of subduction zone seismicity by dehydration of serpentine.Science 2002;298(5597):1407-10.
    [26]Jung H,Green II HW,Dobrzhinetskaya LF.Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change.Nature2004;428(6982):545-9.
    [27]Evans BW.The serpentinite multisystem revisited:chrysotile is metastable.Int Geol Rev 2004;46(6):479-506.
    [28]Reynard B,Hilairet N,Balan E,Lazzeri M.Elasticity of serpentines and extensive serpentinization in subduction zones.Geophys Res Lett 2007;34(13):L13307.
    [29]Mao HK,Xu J,Bell PM.Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions.J Geophys Res 1986;91(B5):4673-6.
    [30]Larson AC,Von Dreele RB.General structure analysis system(GSAS).Report.Los Alamos:Los Alamos National Laboratory;2004.
    [31]Toby BH.EXPGUI,a graphical user interface for GSAS.J Appl Cryst 2001;34(2):210-3.
    [32]Thompson P,Cox DE,Hastings JB.Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3.J Appl Cryst 1987;20(2):79-83.
    [33]Rietveld HM.A profile refinement method for nuclear and magnetic structures.J Appl Cryst 1969;2(2):65-71.
    [34]Birch F.Finite elastic strain of cubic crystals.Phys Rev 1947;71(11):809-24.
    [35]Angel RJ,Gonzalez-Platas J,Alvaro M.EosFit-7c and a fortran module(library)for equation of state calculations.Z Kristallogr 2014;229:405-19.
    [36]Gualtieri AF,Artioli G.Quantitative determination of chrysotile asbestos in bulk materials by combined Rietveld and RIR methods.Powder Diffr 1995;10(4):269-77.
    [37]Falini G,Foresti E,Gazzano M,Gualtieri AF,Leoni M,Lesci IG,et al.Tubularshaped stoichiometric chrysotile nanocrystals.Chemistry 2004;10(12):3043-9.
    [38]Kalinichenko EA,Litovchenko AS.Effect of an electric field on brucite dehydroxylation.Phys Solid State 2000;42(11):2070-5.
    [39]Mckelvy MJ,Sharma R,Chizmeshya AVG,Carpenter RW,Streib K.Magnesium hydroxide dehydroxylation:in situ nanoscale observation of lamellar nucleation and growth.Chem Mater 2001;13(3):921-6.
    [40]Larachi F,Daldoul I,Beaudoin G.Fixation of CO2by chrysotile in low-pressure dry and moist carbonation:ex-situ and in-situ characterizations.Geochim Cosmochim Acta 2010;74(11):3051-75.
    [41]Dlugogorski BZ,Balucan RD.Dehydroxylation of serpentine minerals:implications for mineral carbonation.Renew Sustain Energy Rev 2014;34:353-67.
    [42]Clift P,Vannucchi P.Controls on tectonic accretion versus erosion in subduction zones:implications for the origin and recycling of the continental crust.Rev Geophys 2004;42(2):RG2001.
    [43]Obara K.Nonvolcanic deep tremor associated with subduction in southwest Japan.Science 2002;296(5573):1679-81.
    [44]Syracuse EM,van Keken PE,Abers GA.The global range of subduction zone thermal models.Phys Earth Planet Inter 2010;183(1-2):73-90.
    [45]Van Keken PE,Hacker BR,Syracuse EM,Abers GA.Subduction factory:4.depth-dependent flux of H2O from subducting slabs worldwide.J Geophys Res2011;116(B1):B01401.
    [46]Guillot S,Schwartz S,Reynard B,Agard P,Prigent C.Tectonic significance of serpentinites.Tectonophysics 2015;646:1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700