用户名: 密码: 验证码:
宁波地区空气质量及大气自净能力海陆差异对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of air quality and atmospheric self-purification capacity between coastal and inland areas of Ningbo
  • 作者:杨栋 ; 朱佳敏 ; 姚日升 ; 涂小萍
  • 英文作者:YANG Dong;ZHU Jia-min;YAO Ri-sheng;TU Xiao-ping;Ningbo Ecological Environmental and Meteorological Center;Meteorological Service in Beilun District of Ningbo;Zhejiang Institute of Meteorological Sciences;
  • 关键词:消光系数廓线 ; 后向轨迹分析 ; 大气自净能力 ; 空气等级 ; 首要污染物
  • 英文关键词:Profile of extinction coefficient;;Backward trajectory analysis;;Atmospheric self-purification capacity;;Air quality grade;;Primary pollutant
  • 中文刊名:气象与环境学报
  • 英文刊名:Journal of Meteorology and Environment
  • 机构:宁波市生态环境气象中心;宁波市北仑区气象局;浙江省气象科学研究所;
  • 出版日期:2019-06-15
  • 出版单位:气象与环境学报
  • 年:2019
  • 期:03
  • 基金:浙江省自然科学基金(LY16D050001);; 宁波市气象局项目(NBQX2017008B)共同资助
  • 语种:中文;
  • 页:54-61
  • 页数:8
  • CN:21-1531/P
  • ISSN:1673-503X
  • 分类号:X51
摘要
以镇海、奉化分别作为宁波沿海和内陆空气质量代表站。基于代表站2013—2017年污染物资料和2015年12月至2017年2月冬季激光雷达资料,对比分析宁波地区沿海和内陆站点的空气质量差异;利用NCEP的GDAS(Global Data Assimilation System)资料和ERA-Interim高分辨率再分析资料评估两地气溶胶来源及大气自净能力差异。结果表明:宁波沿海和内陆地区中度及以上污染主要集中于冬季,冬季首要污染物以PM_(2.5)为主;镇海NO_2浓度较奉化显著偏高,而两地PM_(2.5)和PM_(10)浓度差异较小。冬季镇海和奉化3 km以下都存在消光系数大的气溶胶集中层,镇海3 km内消光系数平均值较奉化偏高约40%。两地中度及以上污染时,镇海和奉化的气溶胶粒子主要来自宁波西北方向的内陆地区,比例分别为90%和63%,镇海地区其余10%左右来自近距离低空偏东气流的输送,而奉化地区有37%来自浙江西南部的短距离输送。冬季当宁波地区出现区域性优和中度以上污染时,浙江北部沿海分别盛行东北风和西北风,空气质量优时混合层内平均风速大于中度以上污染时。浙江省大气自净能力比值呈自西北向东南减小,宁波地区优等空气质量大气自净能力约为中度以上污染的1.5倍。大气自净能力在不同空气质量等级下差异显著,可作为大气污染发生、发展和消退判定的参考依据。
        Based on air pollutant monitoring data from 2013 to 2017 and the LiDAR data from December of 2015 to February of 2017 observed at Zhenhai(a coastal station)and Fenghua(an inland station)in Ningbo,the characteristics of air quality at the two stations were comparatively analyzed,and the aerosol sources and difference of atmospheric self-purification capacity at the two stations were evaluated using the reanalysis data from National Centre for Environment Prediction(NCEP)Global Data Assimilation System(GDAS)and ERA-Interim highresolution dataset.The results showed that moderate and heavier air pollution occur mostly in winter in the coastal and inland areas of Ningbo,with PM_(2.5) as the primary pollutants commonly.The NO_2 concentrations in Zhenhai area are significantly higher than that in Fenghua,and concentrations of PM_(2.5) and PM_(10) between the two areas are close to each other.In winter,an aerosol layer below 3 km with large extinction coefficient are observed at both stations,and the average of extinction coefficient below 3 km at Zhenhai station is about 40% larger than that observed at Fenghua station.When moderate and heavier pollution occur at both stations,aerosols are mainly originated from the northwestern inland region of Ningbo,reaching 90% for Zhenhai and 63% for Fenghua,respectively.The rest aerosols in Zhenhai are mainly related to the short-range transport by easterly flows at low levels,and that in Fenghua are primarily due to the short-range transport from the southwestern region of Zhejiang province.The northern coastal areas in Zhejiang province is usually dominated by northeasterly and northwesterly winds when air quality in Ningbo region reaches grades of excellence,moderate,and heavier pollution during winter,with mean wind speed of the former higher than the latter.The ratio of atmospheric self-cleaning capacity between air quality grades of excellence and moderate and heavier pollution decreases from the northwest to the southeast in Zhejiang province,with the value about 1.5 times Ningbo area.The difference of atmospheric self-purification capacity under different air quality grades can be used as a reference for forecasting the occurrence,development and dissipation of air pollution.
引文
[1]牛彧文,顾骏强,浦静姣,等.浙江城市区域灰霾天气的长期变化[J].热带气象学报,2010,26(6):807-812.
    [2]俞科爱,胡晓,黄旋旋,等.宁波区域霾过程的天气分型及环流场特征[J].气象,2015,41(12):1514-1524.
    [3]周福,黄思源,许利明.宁波国际港口气象服务模式初探[J].气象科技进展,2017,7(1):134-137.
    [4]杨元琴,王继志,张小曳,等.2017年沈阳和松辽平原地区重污染过程气象条件影响机理分析[J].气象与环境学报,2018,34(6):116-124.
    [5]霍彦峰,邓学良,弓中强,等.2017年5月长三角地区一次沙尘重污染天气成因分析[J].气象与环境学报,2019,35(1):26-34.
    [6]Zhang Y L,Huang R J,Haddad I.et al.Fossil vs.nonfossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme w inter haze episode of2013[J].Atmospheric Chemistry and Physics,2015,15(3),1299-1312.
    [7]王跃思,姚利,王莉莉,等.2013年元月我国中东部地区强霾污染成因分析[J].中国科学:地球科学,2014,44(1):15-26.
    [8]郭淳薇,孙兆彬,李梓铭,等.北京地区近35年大气污染扩散条件变化[J].环境科学,2017,38(6):2202-2210.
    [9]翁之梅,李丽平,杨万裕,等.浙江省冬季不同霾过程的后向气流轨迹及环流特征[J].气象,2016,42(2):183-191.
    [10]毛敏娟,杜荣光,胡德云.气候变化对浙江省大气污染的影响[J].环境科学研究,2018,31(2):221-230.
    [11]刘丽,王体健,王勤耕.区域复杂地形大气污染扩散的模拟研究[J].高原气象,2008,27(5):1074-1082.
    [12]刘宁微,王扬锋,马雁军,等.复杂地形对城市空气污染影响的数值试验研究[J].地理科学,2008,28(3):396-401.
    [13]李怀川,陈宣淼,叶子详,等.浙江省重度空气污染过程时空变化特征[J].气象与环境学报,2017,33(3):68-79.
    [14]郁珍艳,李正泉,高大伟,等.浙江省空气质量与大气自净能力的特征分析[J].气象,2017,43(3):323-332.
    [15]黄思源,王界,全彩峰.2015年宁波地区两次灰霾天气过程气溶胶垂直分布特征分析[J].气象与环境学报,2017,33(3):45-51.
    [16]李义宇,杨鸿儒,王楠,等.太原市一次重污染天气过程的成因分析[J].气象与环境学报,2018,34(2):11-18.
    [17]董贞花,齐伊玲,孔海江.河南省三次重污染过程的对比分析[J].气象与环境学报,2019,35(1):10-17.
    [18]赵佳莹,徐海明.中国区域探空资料与再分析资料风速场的对比分析[J].气候与环境研究,2014,19(5):587-600.
    [19]孙葭,章新平,黄一民.不同再分析降水数据在洞庭湖流域的精度评估[J].长江流域资源与环境,2015,24(11):1850-1859.
    [20]高路,郝璐.ERA-Interim气温数据在中国区域的适用性评估[J].亚热带资源与环境学报,2014,9(2):75-81.
    [21]赵珊珊,朱蓉.全国大气自洁能力气候评价方法[C]//国家气候中心,气候变化与气候变异、生态-环境演变及可持续发展.北京:气象出版社,2006,266-269.
    [22]Nozaki K Y.Mixing depth model vsing hourly surface observations.Report 7053[R].USAF Environmental Technical Application Center,1973.
    [23]陈磊,俞科爱,林宏伟,等.宁波市大气混合层厚度变化特征及其与空气污染的关系[J].气象与环境学报,2017,33(4):40-47.
    [24]王耀庭,苗世光,张小玲,等.北京秋季一次降雪前污染天气的激光雷达观测研究[J].气候与环境研究,2014,19(6):659-669.
    [25]杨辉,刘文清,陆亦怀,等.北京城区大气边界层的激光雷达观测[J].光学技术,2005,31(2):221-226.
    [26]周燕秋,倪长健,刘培川,等.基于激光雷达分析一次重霾过程混合层高度[J].中国环境监测,2016,32(4):22-28.
    [27]何涛,侯鲁健,吕波,等.激光雷达探测反演PM2.5浓度的精度研究[J].中国激光,2013,40(1):1-6.
    [28]胡欢陵,吴永华,谢晨波,等.北京地区夏冬季颗粒物污染边界层的激光雷达观测[J].环境科学研究,2004,17(1):59-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700