用户名: 密码: 验证码:
高温水蒸汽对CO_2电化学传感器性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of High Temperature Water Vapor on Characteristics of CO_2 Electrochemical Sensor
  • 作者:王光伟 ; 陈鸿珍 ; 李友凤 ; 谢波 ; 江忠远
  • 英文作者:WANG Guangwei;CHEN Hongzhen;LI Youfeng;XIE Bo;JIANG Zhongyuan;Department of Chemistry and Chemical Engineering, Zunyi Normal University;Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology (CIGIT), Chinese Academy of Sciences;
  • 关键词:无机非金属材料 ; 掺杂 ; 氧化碳酸盐 ; 水蒸汽 ; YSZ ; CO_2传感器
  • 英文关键词:inorganic non-metallic materials;;dope;;oxycarbonate;;water vapor;;YSZ;;CO_2 sensor
  • 中文刊名:材料研究学报
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:遵义师范学院化学化工学院;中国科学院水库水环境重点实验室中国科学院重庆绿色智能技术研究院;
  • 出版日期:2019-09-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金(41763008,41203047);; 贵州省基础研究计划(重点)(2019-1461);; 贵州省科技支撑计划(2018-2774);; 贵州省普通高等学校科技拔尖人才支持计划(2017-086);; 遵义师范学院博士启动基金(BS2017-02);; 重庆市前沿与应用基础研究项目(cstc2015jcyjA20008)~~
  • 语种:中文;
  • 页:75-82
  • 页数:8
  • CN:21-1328/TG
  • ISSN:1005-3093
  • 分类号:TP212.2
摘要
使用锂钡掺杂氧化碳酸盐作为敏感电极材料制备YSZCO_2电化学传感器,研究了高温水蒸汽对传感器性能的影响。结果表明,经300℃高温水蒸汽处理(24~120 h)后,传感器对CO_2浓度的变化(271~576802μL/L)仍然表现出准确的响应特性,电子转移数接近理论值2;未经高温水蒸汽处理和经高温水蒸汽处理120 h的传感器,均表现出较低的氧含量依赖特性,在不同的氧含量条件下传感器对CO_2浓度突变的响应电动势相同。这种传感器不但能在含有一定比例水蒸汽的环境中长时间工作,而且在经过一定程度的高温水蒸汽累积作用后其性能没有明显的劣化。
        Carbon dioxide electrochemical sensor was prepared with Li and Ba co-doped oxycarbonate as auxiliary sensing electrode and YSZ as electrolyte, then the influence of high temperature water vapor on the performance of the sensor was investigated. The results show that the potentiometric sensor respond correctly and rapidly to the change of CO_2 concentration(271~576802 μL/L) after pretreatment in water vapor(300℃) for 24~120 h. The number of transfer electrons of the electrode reactions were approximately 2. Low oxygen dependency was found for the sensors, whether they were pretreated or not in water vapor for 120 h, all responded rapidly and accordingly for different oxygen content. The sensor worked not only in water vapor for relatively long term, but also after the constantly water vapor treatment to some extent.
引文
[1] Miura N, Yan Y T, Nonaka S, et al. Sensing properties and mechanism of a planar carbon dioxide sensor using magnesia-stabilized zirconia and lithium carbonate auxiliary phase[J]. J. Mater.Chem., 1995, 5:1391
    [2] Fergus J W. A review of electrolyte and electrode materials for high temperature electrochemical CO2and SO2gas sensors[J].Sensor. Actuat., 2008, 134B:1034
    [3] Schwandt C, Kumar R V, Hills M P. Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide[J].Sensor. Actuat., 2018, 265B:27
    [4] Okamoto T, Shimamoto Y, Tsumura N, et al. Drift phenomena of electrochemical CO2sensor with Pt, Na2CO3/Na+-electrolyte//YSZ/Pt structure[J]. Sensor. Actuat., 2005, 108B:346
    [5] Belda C, Fritsch M, Feller C, et al. Stability of solid electrolyte based thick-film CO2sensors[J]. Microelectron. Reliab., 2009,49:614
    [6] N?fe H, Aldinger F. CO2sensor based on a solid state oxygen concentration cell[J]. Sensor. Actuat., 2000, 69B:46
    [7] Morio M, Hyodo T, Shimizu Y, et al. Effect of macrostructural control of an auxiliary layer on the CO2sensing properties of NASICON-based gas sensors[J]. Sensor. Actuat., 2009, 139B:563
    [8] Sadaoka Y. Nasicon based CO2gas sensor with an auxiliary electrode composed of LiCO3-metal oxide mixtures[J]. Sensor. Actuat., 2007, 121B:194
    [9] Lee I, Akbar S A. Potentiometric carbon dioxide sensor based on thin Li3PO4electrolyte and Li2CO3sensing electrode[J]. Ionics,2014, 20:563
    [10] Imanaka N, Kamikawa M, Tamura S, et al. Carbon dioxide gas sensor with multivalent cation conducting solid electrolytes[J].Sensor. Actuat., 2001, 77B:301
    [11] Imanaka N, Kamikawa M, Tamura S, et al. Carbon dioxide gas sensing with the combination of trivalent Sc3+ion conducting Sc2(WO4)3and O2-ion conducting stabilized zirconia solid electrolytes[J]. Solid State Ionics, 2000, 133:279
    [12] Pasierb P, Komornicki S, Gajerski R, et al. The performance and long-time stability of potentiometric CO2gas sensors based on the(Li-Ba)CO3/NASICON/(Na-Ti-O)electrochemical cells[J]. Solid State Ionics, 2003, 157:357
    [13] Lee J S, Lee J H, Hong S H. Nasicon-based amperometric CO2sensor using Na2CO3-BaCO3auxiliary phase[J]. Sensor. Actuat.,2003, 96B:663
    [14] Yamauchi M, Itagaki Y, Aono H, et al. Reactivity and stability of rare earth oxide-Li2CO3mixtures[J]. J. Eur. Ceram. Soc., 2008,28:27
    [15] Imanaka N, Ogura A, Kamikawa M, et al. CO2gas sensor with the combination of tetravalent zirconium cation and divalent oxide anion conducting solids with water-insoluble oxycarbonate electrode[J]. Electrochem. Commun., 2001, 3:451
    [16] Imanaka N, Kamikawa M, Adachi G Y. A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode[J].Anal. Chem., 2002, 74:4800
    [17] Ding K, Seyfried W E Jr. Direct p H measurement of NaCl-bearing fluid with an in situ sensor at 400℃and 40 megapascals[J]. Science, 1996, 272:1634
    [18] Ding K, Seyfried W E Jr, Tivey M K, et al. In situ measurement of dissolved H2and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge[J]. Earth Planet.Sci. Lett., 2001, 186:417
    [19] Ding K, Seyfried W E. In situ measurement of pH and dissolved H2in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures[J]. Chem. Rev., 2007, 107:601
    [20] Sakai N, Yamaji K, Horita T, et al. Effect of water on electrochemical oxygen reduction at the interface between fluorite-type oxideion conductors and various types of electrodes[J]. Solid State Ionics, 2004, 174:103
    [21] Ménil F, Daddah B O, Tardy P, et al. Planar LISICON-based potentiometric CO2sensors:influence of the working and reference electrodes relative size on the sensing properties[J]. Sensor. Actuat.,2005, 107B:695
    [22] Lee I, Akbar S A, Dutta P K. High temperature potentiometric carbon dioxide sensor with minimal interference to humidity[J]. Sensor. Actuat., 2009, 142B:337
    [23] Tamura S, Hasegawa I, Imanaka N, et al. Carbon dioxide gas sensor based on trivalent cation and divalent oxide anion conducting solids with rare earth oxycarbonate based auxiliary electrode[J].Sensor. Actuat., 2005, 108B:359
    [24] Aono H, Itagaki Y, Sadaoka Y. Na3Zr2Si2PO12-based CO2gas sensor with heat-treated mixture of Li2CO3and Nd2O3as an auxiliary electrode[J]. Sensor. Actuat., 2007, 126B:406

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700