用户名: 密码: 验证码:
金属有机骨架及其衍生材料活化过硫酸盐在水处理中的应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment
  • 作者:李小娟 ; 廖凤珍 ; 叶兰妹 ; 刘政霖
  • 英文作者:LI Xiaojuan;LIAO Fengzhen;YE Lanmei;LIU Zhenglin;College of Environment and Resources, Fuzhou University;
  • 关键词:金属有机骨架材料 ; 过硫酸盐 ; 自由基 ; 催化 ; 活化 ; 水处理 ; 有机污染物
  • 英文关键词:metal-organic frameworks;;persulfate;;radical;;catalysis;;activation;;water treatment;;organic pollutants
  • 中文刊名:化工进展
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:福州大学环境与资源学院;
  • 出版日期:2019-10-05
  • 出版单位:化工进展
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金(21407026)
  • 语种:中文;
  • 页:356-365
  • 页数:10
  • CN:11-1954/TQ
  • ISSN:1000-6613
  • 分类号:X703
摘要
金属有机骨架材料(MOFs)具有以金属离子为中心的结构特征,因此利用MOFs及其衍生材料可构建非均相过硫酸盐催化氧化体系,该体系能耗低且高效,在水处理中具有良好的应用前景。本文综述了MOFs及其衍生材料活化过硫酸盐处理水中难降解有机污染物(包括有机染料、环境内分泌干扰物和抗生素)的研究现状,探讨了不同组成及结构的MOFs及MOFs衍生材料对催化降解水中有机污染物性能的影响,指出MOFs及其衍生材料的结构设计、合成策略、不饱和的金属活性位点以及反应体系中的活性物质等是体系催化降解能力的重要影响因素。最后总结了目前基于MOFs材料活化过硫酸盐作为一种新型的高级氧化技术在水处理应用研究中存在的问题,并提出新型高效联合活化体系的构建及活化作用机制深入的探索和完善是今后研究的重点。
        Due to the metal ion-centered structural features, the metal-organic frameworks(MOFs) and their derivatives can be used to construct heterogeneous persulfate catalytic oxidation system. The heterogeneous persulfate activated process with low energy consumption and high efficiency has a good application prospect in water treatment. In this review, the activation of persulfate by MOFs and their derivatives to degrade refractory organic pollutants including organic dyes, environmental endocrine disruptors and antibiotics in aqueous solution were systematically presented. The effects of MOFs' and MOFs derivatives' structure and composition on the catalytic degradation of organic pollutants were discussed. It was demonstrated that the rational structure design, synthesis strategy, unsaturated metal active sites of catalysts and active species in the catalytic oxidation system played a critical role in the degradation of organic pollutants. Finally, the problems existed in the MOFs-based heterogeneous persulfate activated system were summarized and it was proposed that the construction of a new highefficiency combined activation system and the in-depth mechanism exploration and improvement would be the focus of future research.
引文
[1]蒲嘉懿.金属有机骨架材料衍生物活化过一硫酸氢钾降解水体中污染物[D].广州:华南理工大学, 2017.PU J Y. Metal organic framework derivatives activate peroxymonosulfate to degrade pollutants in water[D]. Guangzhou:South China University of Technology, 2017.
    [2] LIANG C, HUANG C F, CHEN Y J. Potential for activated persulfate degradation of BTEX contamination[J]. Water Research, 2008, 42(15):4091-4100.
    [3]周宁.超声/过硫酸盐法去除水中卡马西平及腐殖酸的研究[D].武汉:华中科技大学, 2015.ZHOU N. Study on the degradation of carbamazepine and humic acid in water using ultrasonic combined with persulfate method[D]. Wuhan:Huazhong University of Science and Technology, 2015.
    [4]徐朋飞,郭怡秦,王光辉,等.紫外活化过硫酸盐对甲基橙脱色处理实验研究[J].环境工程, 2017, 35(11):58-60,80.XU P F, GUO Y Q, WANG G H, et al. Experrimental study on UVactivated persulfate for decolorization of methyl orange wastewater[J].Environmental Engineering, 2017, 35(11):58-60,80.
    [5]董紫君,张茜,代威力,等.热活化过硫酸盐体系中碘离子的转化分析[J].中国给水排水, 2018, 34(15):55-58,63.DONG Z J, ZHANG X, DAI W L, et al. Analysis on transformation of iodide in thermoactivated persulfate system[J]. China Water&Wastewater, 2018, 34(15):55-58,63.
    [6] YAN J, LEI M, ZHU L, et al. Degradation of sulfamonomethoxine with Fe3O4magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials, 2011, 186(2/3):1398-1404.
    [7] KAKAVANDI B. Heterogeneous Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4as a heterogeneous persulfate activator:adsorption and degradation studies[J]. Journal of Industrial&Engineering Chemistry, 2016, 45:323-333.
    [8] MA Q, ZHANG X, GUO R, et al. Persulfate activation by magneticFe2O3/Mn3O4nanocomposites for degradation of organic pollutants[J].Separation&Purification Technology, 2018, 210:335-342.
    [9] CHEN L, ZUO X, YANG S, et al. Rational design and synthesis of hollow Co3O4@Fe2O3core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate[J].Chemical Engineering Journal, 2019, 359:373-384.
    [10] RAMOS M A V, YAN W, LI X Q, et al. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles:understanding the significance of the core-shell structure[J]. Journal of Physical Chemistry C, 2009, 113(33):14591-14594.
    [11] BETTERTON E A, HOFFMANN M R. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate[J].Environmental Science&Technology, 1990, 24(12):1819-1824.
    [12] GáBOR L, JóZSEF K, ZSUZSA B, et al. One-versus two-electron oxidation with peroxomonosulfate ion:reactions with iron(Ⅱ), vanadium(Ⅳ), halide ions, and photoreaction with cerium(Ⅲ)[J]. Inorganic Chemistry, 2009, 48(4):1763-1773.
    [13]丁耀彬.基于过渡金属氧化物催化活化过一硫酸盐高级氧化方法及其在有机污染物降解中的应用[D].武汉:华中科技大学, 2013.DING Y B. Advanced oxidation technology based on activation of peroxymonosulfate by transition metal oxides for degradation of organic pollutants[D]. Wuhan:Huazhong University of Science and Technology, 2013.
    [14] SHARMA S B, MUDALIAR M, RAO B, et al. Radiation chemical oxidation of benzaldehyde, acetophenone, and benzophenone[J].Journal of Physical Chemistry A, 1997, 101(45):8402-8408.
    [15] FORSEY S. In situ chemical oxidation of creosote/coal tar residuals:experimental and numerical investigation[J]. Archives Roumaines de Pathologie Expérimentales et de Microbiologie, 2004, 28(2):557-562.
    [16] LIANG C J, SU H. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial&Engineering Chemistry Research, 2009, 48(11):472-475.
    [17] CLIFTON C L, HUIE R E. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4-·alcohols[J]. International Journal of Chemical Kinetics, 1989, 21(8):677-687.
    [18] PADMAJA S, ALFASSI Z B, NETA P, et al. Rate constants for reactions of SO4-·radicals in acetonitrile[J]. International Journal of Chemical Kinetics, 1993, 25(3):193-198.
    [19] HUANG K C, ZHAO Z, HOAG G E, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J].Chemosphere, 2005, 61(4):551-560.
    [20] HU L, DENG G, LU W, et al. Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant Rhodamine B[J]. Chinese Journal of Catalysis, 2017, 38(8):1360-1372.
    [21] ZENG T, ZHANG X, WANG S, et al. Spatial confinement of a Co3O4catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J]. Environmental Science&Technology, 2015, 49(4):2350-2357.
    [22] LIN K Y, CHANG H A. Zeolitic imidazole framework-67(ZIF-67)as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53:40-45.
    [23] PU M, MA Y, WAN J, et al. Activation performance and mechanism of a novel heterogeneous persulfate catalyst:metal organic framework MIL-53(Fe)with Fe(Ⅱ)/Fe(Ⅲ)mixed-valence coordinative unsaturated iron center[J]. Catalysis Science&Technology, 2017, 7(5):1129-1140.
    [24] PU M, GUAN Z, MA Y, et al. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of orange G in aqueous solution[J]. Applied Catalysis A:General, 2018, 549:82-92.
    [25] WANG M, YANG L, GUO C, et al. Bimetallic Fe/Ti-based metalorganic framework for persulfate-assisted visible light photocatalytic degradation of orangeⅡ[J]. Chemistry Select, 2018, 3(13):3664-3674.
    [26] LI H, WAN J, MA Y, et al. Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metalorganic frameworks:mechanism, performance, and stability[J]. Journal of Hazardous Materials, 2016, 318:154-163.
    [27] YANG Q, CHOI H, ALABED S R, et al. Iron-cobalt mixed oxide nanocatalysts:heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications[J]. Applied Catalysis B:Environmental, 2009, 88(3):462-469.
    [28] BHATTACHARJEE S, CHOI J S, YANG S T, et al. Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation[J]. Journal of nanoscience and nanotechnology, 2010, 10(1):135-141.
    [29] AI L, ZHANG C, LI L, et al. Iron terephthalate metal-organic framework:revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J].Applied Catalysis B:Environmental, 2014, 148/149:191-200.
    [30] DU J J, YUAN Y P, SUN J X, et al. New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye[J]. Journal of Hazardous Materials, 2011, 190(1):945-951.
    [31] MEI W, LI D, XU H, et al. Effect of electronic migration of MIL-53(Fe)on the activation of peroxymonosulfate under visible light[J].Chemical Physics Letters, 2018, 706:694-701.
    [32] GAO Y, LI S, LI Y, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe)under visible LED light mediated by persulfate[J]. Applied Catalysis B:Environmental, 2017, 202:165-174.
    [33] LIN K Y, CHANG H A, HSU C J. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water[J]. RSC Advances, 2015, 5(41):32520-32530.
    [34] WANG J, WAN J, MA Y, et al. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of orange G through persulfate activation[J]. RSC Advances, 2016, 6(113):112502-112511.
    [35] LI X H, GUO W L, LIU Z, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369:130-136.
    [36] YUE X X, GUO W L, LI X H, et al. Core-shell Fe3O4@MIL-101(Fe)composites as heterogeneous catalysts of persulfate activation for the removal of acid orange 7[J]. Environmental Science and Pollution Research, 2016, 23(15):15218-21526.
    [37] DUAN M J, GUAN Z Y, MA Y W, et al. A novel catalyst of MIL-101(Fe)doped with Co and Cu as persulfate activator:synthesis,characterization, and catalytic performance[J]. Chemical Papers, 2018,72(1):235-250.
    [38]段美娟,马邕文,万金泉,等.应用铁铜双金属有机骨架活化过硫酸盐催化剂去除水中有机污染物的研究[J].环境科学学报, 2017, 37(5):1742-1750.DUAN M J, MA Y W, WAN J Q, et al. Novel bimetallic metal-organic frameworks activated persulfate processes for the removal of organic contaminants in water[J]. Acta Scientiae Circumstantiae, 2017, 37(5):1742-1750.
    [39] LI H, QIN J, ZHANG Y, et al. The efficiency and mechanism of dibutyl phthalate removal by copper-based metal organic frameworks coupled with persulfate[J]. RSC Advances, 2018, 8(69):39352-39361.
    [40] GONG Y, YANG B, ZHANG H, et al. A g-C3N4/MIL-101(Fe)heterostructure composite for highly efficient BPA degradation with persulfate under visible light irradiation[J]. Journal of Materials Chemistry A, 2018, 6(46):23703-23711.
    [41] WANG Y, GUO W L, LI X H. Activation of persulfates by ferroceneMIL-101(Fe)heterogeneous catalyst for degradation of bisphenol A[J].RSC Advances, 2018, 8(64):36477-36483.
    [42] BO L, ZHANG X, SHIOYAMA H, et al. Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4nanoparticles as an electrode material for lithium ion battery[J].Journal of Power Sources, 2010, 195(3):857-861.
    [43] HUANG X L, HU Q, GAO L, et al. Adsorption characteristics of metalorganic framework MIL-101(Cr)towards sulfamethoxazole and its persulfate oxidation regeneration[J]. RSC Advances, 2018, 8(49):27623-27630.
    [44] PENG J, WU E, WANG N, et al. Removal of sulfonamide antibiotics from water by adsorption and persulfate oxidation process[J]. Journal of Molecular Liquids, 2019, 274:632-638.
    [45] LIN K Y, CHANG H A, CHEN R C. MOF-derived magnetic carbonaceous nanocomposite as a heterogeneous catalyst to activate oxone for decolorization of Rhodamine B in water[J]. Chemosphere,2015, 130:66-72.
    [46] LIN K Y, HSU F K. Magnetic iron/carbon nanorods derived from a metal organic framework as an efficient heterogeneous catalyst for the chemical oxidation process in water[J]. RSC Advances, 2015, 5(63):50790-50800.
    [47] PU J Y, WAN J Q, WANG Y, et al. Different Co-based MOFs templated synthesis of Co3O4nanoparticles to degrade RhB by activation of oxone[J]. RSC Advances, 2016, 6(94):91791-91797.
    [48] WANG N, MA W J, REN Z Q, et al. Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants[J]. Journal of Materials Chemistry A,2018, 6(3):884-895.
    [49] WANG N, MA W J, REN Z Q, et al. Template synthesis of nitrogendoped carbon nanocages-encapsulated carbon nanobubbles as catalyst for activation of peroxymonosulfate[J]. Inorganic Chemistry Frontiers,2018, 5(8):1849-1860.
    [50] LIN K Y, HSU F K, LEE W D. Magnetic cobalt-graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate[J]. Journal of Materials Chemistry A, 2015, 3(18):9480-9490.
    [51] LI X, WANG Z, ZHANG B, et al. Fex Co3-xO4nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol a by activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2016, 181:788-799.
    [52] GONG Y, ZHAO X, ZHANG H, et al. MOF-derived nitrogen doped carbon modified g-C3N4heterostructure composite with enhanced photocatalytic activity for bisphenol a degradation with peroxymonosulfate under visible light irradiation[J]. Applied Catalysis B:Environmental, 2018, 233:35-45.
    [53] LI H R, TIAN J Y, ZHU Z G, et al. Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation:integrated experimental and theoretical investigations for mechanism and application[J]. Chemical Engineering Journal, 2018, 354:507-516.
    [54] YANG S J, QIU X J, JIN P K, et al. MOF-templated synthesis of CoFe2O4nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A[J]. Chemical Engineering Journal, 2018,353:329-339.
    [55] ZHU C Q, LIU F Q, LING C, et al. Growth of graphene-supported hollow cobalt sulfide nanocrystals via MOF-templated ligand exchange as surface-bound radical sinks for highly efficient bisphenol a degradation[J]. Applied Catalysis B:Environmental, 2019, 242:238-248.
    [56] LIU Y, CHEN X Y, YANG Y L, et al. Activation of persulfate with metal-organic framework-derived nitrogen-doped porous Co@NC nanoboxes for highly efficient p-hloroaniline removal[J]. Chemical Engineering Journal, 2019, 358:408-418.
    [57] QIN F X, JIA S Y, LIU Y, et al. Metal-organic framework as a template for synthesis of magnetic CoFe2O4nanocomposites for phenol degradation[J]. Materials Letters, 2013, 101:93-95.
    [58] LIN K Y, CHEN B C. Efficient elimination of caffeine from water using oxone activated by a magnetic and recyclable cobalt/carbon nanocomposite derived from ZIF-67[J]. Dalton Transactions, 2016, 45(8):3541-3551.
    [59] LI C X, CHEN C B, LU J Y, et al. Metal organic framework-derived CoMn2O4catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation[J]. Chemical Engineering Journal,2018, 337:101-109.
    [60] LIU C, WANG Y P, ZHANG Y T, et al. Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants:incorporation NH2-group into structure of its MOF precursor[J]. Chemical Engineering Journal,2018, 354:835-848.
    [61] ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes:a review on heterogeneous catalysts and applications[J].Chemosphere, 2017, 189:224-238.
    [62] XIA B, LIU T, LUO W, et al. NiPt-MnOx supported on N-doped porous carbon derived from metal-organic frameworks for highly efficient hydrogen generation from hydrazine[J]. Journal of Materials Chemistry A, 2016, 4(15):5616-5622.
    [63] DUAN X G, AO Z M, ZHOU L, et al. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation[J]. Applied Catalysis B:Environmental, 2016, 188:98-105.
    [64] LEE H S, KIM H I, WEON S, et al. Activation of persulfates by graphitized nanodiamonds for removal of organic compounds[J].Environmental Science&Technology, 2016, 50(18):10134-10142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700