用户名: 密码: 验证码:
黄土高原-青藏高原过渡带农户生产系统的能值分析——以通渭-渭源-夏河样带为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Emergy analysis of farmer producing system in the transitional zone of Qinghai-Tibet Plateau on Loess Plateau: Tongwei-Weiyuan-Xiahe Transect as an Example
  • 作者:王梦媛 ; 高小叶 ; 侯扶江
  • 英文作者:WANG Mengyuan;GAO Xiaoye;HOU Fujiang;State Key Laboratory of Grassland Agro-ecosystems;College of Pastoral Agriculture Science and Technology,Lanzhou University;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture;
  • 关键词:能流 ; 作物生产 ; 家畜生产 ; 海拔 ; 系统耦合 ; Logistic模型 ; 结构方程模型
  • 英文关键词:energy flow;;crop production;;livestock production;;sltitude;;system coupling;;Llogistic model;;structural equation model(SEM)
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:草地农业生态国家重点实验室;兰州大学草地农业科技学院;农业农村部草牧业创新重点实验室;
  • 出版日期:2019-03-08
  • 出版单位:生态学报
  • 年:2019
  • 期:05
  • 基金:长江学者和创新团队发展计划项目(IRT-17R50);; 国家自然科学基金(31672472);; 甘肃省退牧还草科技支撑(GH2017-TMHC001)
  • 语种:中文;
  • 页:278-291
  • 页数:14
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:F327
摘要
通渭-渭源-夏河样带位于黄土高原向青藏高原过渡的生态区,是我国典型农牧交错带。长期以来,不合理的农业生产结构带来生态、经济等一系列问题,制约了该地区草地农业的持续发展。为此,从能值角度分析区域农业生产结构,可为农(牧)户决策提供理论依据,为优化区域农业生产结构提供科学依据。收集研究区农户作物和家畜生产的投入-产出数据,用能值方法分析农户生产系统结构特征、农户生产决策行为及生产系统耦合作用,用结构方程模型(SEM)分析农户生产系统能量的组分间流动。研究发现,随海拔增高,农户作物生产活动减少,作物总产出能值递减;尽管作物生产主要投入和产出要素相同,但同一作物不同地点的同一要素投入、产出能值和能值收益率均存在显著差异(P<0.05);同一地点不同作物的同一要素投入、产出能值和能值收益率均差异显著(P<0.05);作物生产投入要素中,有机肥能值在通渭和渭源均有较高贡献;作物投入和产出能值的农户生产决策阈值自东向西递减,在能值投入初始增加时,夏河农户作物生产规模扩增最为迅速。家畜养殖规模、能值投入和产出自东向西递增;通渭和渭源,小麦秸秆和苜蓿作为中间投入,能值贡献率达到80%;夏河家畜生产投入要素中,补饲粮食能值贡献率高达90%;家畜投入和产出能值的农户生产决策阈值点自东向西递增;能值收益率随耦合度的增加呈指数上升,通渭和渭源能值收益率的增加速度,随耦合度的增加趋于缓慢,而夏河能值收益率增速随耦合度的增加而上升。调整作物生产内部粮、经、饲产品比例结构,加强作物生产与家畜生产耦合作用,优化天然草地利用方式,实现生态效益最大化;阈值点调控农户生产决策行为,实现该区域农业生产结构优化。
        The Tongwei-Weiyuan-Xiahe transect zone is located in the ecological zone of transition ranging form the Loess Plateau to the Qinghai-Tibet Plateau. It is a typical agri-pastoral transitional zone of the Northern China. For a long time, ecological and economic problems caused by the inappropriate agricultural production structure have severely restricted the sustainable development of grassland agriculture in this region. From the perspective of emergy, this research aims to(1) provide a new data support and theoretical basis for the adjustment of local agricultural production structure, policy formulation, and agricultural(pastoral) household decision-making in this area and(2) provide a scientific basis for the optimization of regional agricultural production structure. Input-output data of crop production and livestock production of households in the study area have been collected; the emergy value method has been adopted to analyze the input-output structure characteristics of crop production and livestock production, the production decision-making behavior of farmers, and the coupling effect of production systems. By applying the structural equation model(SEM), this research analyzed the energy conversion between components of production systems. It is demonstrated by this research that with the increase of altitude, crop production activities of farmers would decrease and the total output value of crops would also decrease. Although the main inputs and output factors of crop production are the same, the input emergy, output emergy, and emergy yield ratio of the same factor in different parts of the same crop can be varied. Significant differences can be seen from the input, output emergy value, and emergy yield ratio of the same factor at the same location of different crops(P < 0.05). In the input factors of crop production, the emergy value of organic fertilizer made significant contribution in Tongwei and Weiyuan. Agricultural production decision thresholds for crop input and output emergy values decreased from the east to the west, while the crop production scale in Xiahe expanded most rapidly when the initial input of emergy increased. Animal husbandry scale, emergy input, and output of animal production increased from the east to the west. In Tongwei and Weiyuan, wheat straw and alfalfa, as intermediate inputs, achieved 80% emergy contribution rate. In Xiahe, with animal production input factors, the contribution rate of supplement grain emergy value was as high as 90%, while the farm production decision threshold of livestock input and output emergy increased from the east to the west. The emergy yield ratio increased exponentially with the increase of the coupling degree. The speed of emergy yield ratio in both Tongwei and Weiyuan tended to decrease with the increase of the coupling degree, whereas, the speed of emergy yield ratio in Xiahe increased with the increase of the coupling degree. Adjusting the internal proportion of grain, cash crop, and feed products in crop production can strengthen the coupling effect between crop production and livestock production. Thus, optimizing the use of natural grassland and maximizing ecological benefits can be achieved. The threshold point can be used to regulate the production decision-making behavior of farmers and optimize the agricultural production structure in the region.
引文
[1] 侯惠香. 生态系统功能的归纳. 希望月报, 2007, (1): 66- 66.
    [2] 侯彦林. 社会-经济-自然复合生态系统有效物质(能量、货币)平衡模型的建立及其应用. 生态学报, 2001, 21(12): 2147- 2152.
    [3] 胡聃, 文秋霞, 李锋, 王震, 冯强, 张艳萍. 北京城市生态系统的能值动态分析. 城市环境与城市生态, 2006, 19(6): 1- 4.
    [4] 王金照. 基于能值分析的陕西小麦、玉米、苹果、大枣比较优势研究[D]. 西安: 西北农林科技大学, 2011.
    [5] 蓝盛芳, 钦佩, 陆宏芳. 生态经济系统能值分析. 北京: 化学工业出版社, 2002.
    [6] 陆宏芳, 沈善瑞, 陈洁, 蓝盛芳. 生态经济系统的一种整合评价方法: 能值理论与分析方法. 生态环境, 2005, 14(1): 121- 126.
    [7] 吴霜, 延晓冬, 张丽娟. 中国森林生态系统能值与服务功能价值的关系. 地理学报, 2014, 69(3): 334- 342.
    [8] Safonov P, Comar V, Ortega E. Systems modeling of Brazilian sustainability with emergy flows diagrams//Crabbé P, Holland A, Ryszkowski L, Westra L, eds. Implementing Ecological Integrity. Dordrecht: Springer, 2000: 185- 189.
    [9] 张芳怡, 濮励杰, 张健. 基于能值分析理论的生态足迹模型及应用——以江苏省为例[J]. 自然资源学报, 2006, 21(4):653- 660.
    [10] Viglia S, Civitillo D F, Cacciapuoti G, Ulgiati S. Indicators of environmental loading and sustainability of urban systems. An emergy-based environmental footprint. Ecological Indicators, 2017, doi: 10.1016/j.ecolind.2017.03.060.
    [11] Ohnishi S, Dong H J, Geng Y, Fujii M, Fujii T. A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy methods—Case of Kawasaki, Japan. Ecological Indicators, 2017, 73: 513- 524.
    [12] Nakajima E S, Ortega E. Carrying capacity using emergy and a new calculation of the ecological footprint. Ecological Indicators, 2016, 60: 1200- 1207.
    [13] Fang W, An H Z, Li H J, Gao X Y, Sun X Q, Zhong W Q. Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing. Energy Policy, 2017, 100: 326- 337.
    [14] 徐磊. 陇东黄土高原农业系统的环境适应性和生产力调控[D]. 兰州: 兰州大学, 2015.
    [15] 侯扶江, 南志标, 任继周. 作物一家畜综合生产系统. 草业学报, 2009, 18(5): 211- 234.
    [16] 任继周, 万长贵. 系统耦合与荒漠-绿洲草地农业系统——以祁连山一临泽剖面为例. 草业学报, 1994, (3): 1- 8.
    [17] 王搏. 基于耦合模型的我国区域经济与生态环境协调发展动态研究[D]. 长沙: 湖南大学, 2014.
    [18] 董孝斌, 高旺盛, 隋鹏, 严茂超. 北方农牧交错带典型农户系统的能值分析. 干旱区资源与环境, 2006, 20(4): 78- 82.
    [19] 董孝斌, 高旺盛. 黄土高原丘陵沟壑区典型流域农业生态系统生产力研究——以纸坊沟为例. 草业学报, 2003, 12(4): 14- 19.
    [20] Hilimire K. Integrated crop/livestock agriculture in the United States: a review. Journal of Sustainable Agriculture, 2011, 35(4): 376- 393.
    [21] Lockie S. Landcare in Australia: cultural transformation in the management of rural environments. Culture, Agriculture, Food and Environment, 1998, 20(1): 21- 29.
    [22] 王宁, 李克昌, 黄兆鸿, 樊振军. 宁夏大农业内部系统耦合初探——Ⅰ牧区育成农区育肥畜牧业生产体制现状调查(以平罗县为例). 草业科学, 2000, 17(4): 6- 12.
    [23] 侯扶江, 常生华, 南志标, 任继周. 建立草地农业系统, 治理民勤荒漠化//中国草学会青年工作委员会2008年农区草业论坛论文集.厦门: 中国草学会, 2008: 68- 74.
    [24] 朱兴运, 任继周. 河西走廓山地-绿洲-荒漠草地农业生态系统的运行机制与模式[J]. 草业科学, 1995(3):1- 5.
    [25] 任继周. 草地农业生态系统通论(精). 合肥: 安徽教育出版社, 2004.
    [26] 高小叶. 农业系统从黄土高原向青藏高原过渡的能量、经济和碳平衡特征[D]. 兰州: 兰州大学, 2011.
    [27] 付强国. 陇东黄土高原农户系统结构和家庭结构[D]. 兰州: 兰州大学, 2016.
    [28] 杨延彪, 刘占龙. 关于夏河县草地畜牧业可持续发展的思考. 家畜生态, 2001, 22(1): 23- 25.
    [29] 彭露茜, 高小叶, 侯扶江. 黄土高原-青藏高原过渡带农户生产系统的经济效益——以通渭-渭源-夏河样带为例[J]. 科学通报, 2018(2):201- 213.
    [30] 吴超超, 高小叶, 侯扶江. 黄土高原-青藏高原过渡带农户生产系统的碳平衡. 应用生态学报, 2017, 28(10): 3341- 3350.
    [31] 李艳春. 基于能值理论的农牧复合系统效能分析[D]. 银川: 宁夏大学, 2009.
    [32] 董晓佳. 定西市农业生态经济系统能值分析[D]. 兰州: 甘肃农业大学, 2014.
    [33] Odum H T. Self-organization, transformity, and information.[J]. Science, 1988, 242(4882):1132- 9.
    [34] Odum H T. Environmental Accounting——EMERGY and Environmental Decision Making[J]. Child Development, 1995, 42(4):1187- 201.
    [35] 陈阜. 农业生态学[M]. 中国农业大学出版社, 2002.
    [36] 蓝盛芳, 钦佩, 陆宏芳. 生态经济系统能值分析[M]. 化学工业出版社, 2002.
    [37] 高雪松, 邓良基, 张世熔. 基于能值方法的成都平原农田生态系统秸秆循环利用模式研究. 中国生态农业学报, 2014, 22(6): 729- 736.
    [38] 宋雨河. 农户生产决策与农产品价格波动研究[D]. 北京: 中国农业大学, 2015.
    [39] 缪文慧. 农产品主产区农户耕种意愿及补偿标准测算研究[D]. 南宁: 广西大学, 2016.
    [40] 董孝斌, 高旺盛, 严茂超. 基于能值理论的农牧交错带两个典型县域生态经济系统的耦合效应分析. 农业工程学报, 2005, 21(11): 1- 6.
    [41] 锡文林, 张新田, 李卫军, 靳发兰. 农区奶牛业主要饲草能值分析. 草食家畜, 2009, (2): 60- 61, 66- 66.
    [42] 任继周. 论华夏农耕文化发展过程及其重农思想的演替//农耕文化与现代农业论坛论文集. 庆阳: 农业部农村社会事业发展中心, 甘肃省农牧厅, 2009: 31- 38.
    [43] 林慧龙, 任继周, 傅华. 草地农业生态系统中的能值分析方法评介. 草业学报, 2005, 14(4): 1- 7.
    [44] 滕玉华, 刘长进, 陈燕, 赖良玉. 基于结构方程模型的农户清洁能源应用行为决策研究. 中国人口·资源与环境, 2017, 27(9): 186- 195.
    [45] 任继周, 侯扶江, 胥刚. 放牧管理的现代化转型——我国亟待补上的一课. 草业科学, 2011, 28(10): 1745- 1754.
    [46] 唐静, 林慧龙. 草地农业的循环经济特征分析. 草业学报, 2013, 22(1): 167- 175.
    [47] 林慧龙, 侯扶江. 草地农业生态系统中的系统耦合与系统相悖研究动态. 生态学报, 2004, 24(6): 1252- 1258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700