用户名: 密码: 验证码:
重金属对植物的毒害及植物对其毒害的解毒机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Toxic effects of heavy metals on plants and detoxification mechanism of plants
  • 作者:陈镔 ; 谭淑端 ; 董方旭 ; 杨雨
  • 英文作者:Chen Bin;
  • 关键词:植物 ; 重金属 ; 毒害 ; 解毒机制
  • 中文刊名:江苏农业科学
  • 英文刊名:Jiangsu Agricultural Sciences
  • 机构:湖南农业大学生物科学技术学院;洞庭湖区农村生态系统健康湖南省重点实验室;
  • 出版日期:2019-03-08 15:22
  • 出版单位:江苏农业科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(编号:31400339);; 中国博士后科学基金(编号:2013M542113);; 湖南省教育厅优秀青年科学基金(编号:15B113)
  • 语种:中文;
  • 页:42-46
  • 页数:5
  • CN:32-1214/S
  • ISSN:1002-1302
  • 分类号:X173
摘要
土壤重金属污染会引发一系列严峻的环境问题,不仅威胁生态系统健康,还限制人类发展。活性氧(ROS)过量积累引起的氧化胁迫是重金属毒害植物的主要原因之一。围绕ROS对质膜、蛋白质、DNA的氧化损伤机制阐述ROS对植物产生毒害的机制,总结分析植物重金属转运蛋白、抗氧化酶系统、细胞壁、液泡对重金属的解毒机制,以期为今后植物耐重金属胁迫生理生态机制研究提供一定的理论依据,为植物修复重金属污染研究提供参考和借鉴。
        
引文
[1]李影,刘鹏.Cd胁迫对3种蕨类植物生理代谢及镉累积特性的影响[J].水土保持学报,2016,30(3):128-133.
    [2]李晓旭.土壤铜、锌、铅污染对上海草本植物群落的影响[D].上海:华东师范大学,2016:1-46.
    [3]蒋逸骏,胡雪峰,舒颖,等.湘北某镇农田土壤-水稻系统重金属累积和稻米食用安全研究[J].土壤学报,2017,54(2):410-420.
    [4]侯伶龙,黄荣,周丽蓉,等.鱼腥草对土壤中镉的富集及根系微生物的促进作用[J].生态环境学报,2010,19(4):817-821.
    [5]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征[J].环境科学,2005,26(3):167-171.
    [6]汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物---圆锥南芥(Arabis paniculata L.)[J].中山大学学报(自然科学版),2005,44(4):135-136.
    [7]胡国涛,杨兴,陈小米,等.速生树种竹柳对重金属胁迫的生理响应[J].环境科学学报,2016,36(10):3870-3875.
    [8]易心钰,蒋丽娟,陈景震,等.铅锌尾矿渣对蓖麻光合特性及抗氧化酶系统的影响[J].生态学杂志,2016,35(4):880-887.
    [9]Verbruggen N,Hermans C,Schat H.Mechanisms to cope with arsenic or cadmium excess in plants[J].Current Opinion in Plant Biology,2009,12(3):364-372.
    [10]Ling Q F,Hong F S.Effects of Pb2+on the structure and function of photosystemⅡof Spirodela polyrrhiza[J].Biological Trace Element Research,2009,129(1/3):251-260.
    [11]Lehotai N,Peto"A,Bajkán S,et al.In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem[J].Acta Physiologiae Plantarum,2011,33(6):2199-2207.
    [12]Zhao J.Interplay among nitric oxide and reactive oxygen species[J].Plant Signaling&Behavior,2007,2(6):544-547.
    [13]van Breusegem F,Dat J F.Reactive oxygen species in plant cell death[J].Plant Physiology,2006,141(2):384-390.
    [14]武佳叶,郝瑞芝,曹媛,等.NO对铅胁迫下玉米根尖细胞的影响[J].中国细胞生物学学报,2013(4):469-475.
    [15]魏志琴,陈志勇,秦蓉,等.Cu2+对拟南芥根的局部毒性及诱导DNA损伤和细胞死亡[J].植物学报,2013,48(3):303-312.
    [16]Morina F,Jovanovic L,Mojovic M,et al.Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall[J].Physiologia Plantarum,2010,140(3):209-224.
    [17]王红霞,施国新,徐勤松,等.Cr6+胁迫对槐叶苹叶片光合生理特征及超微结构的影响[J].西北植物学报,2008,28(11):2244-2250.
    [18]孙守琴,何明,曹同,等.Pb、Ni胁迫对大羽藓抗氧化酶系统的影响[J].应用生态学报,2009,20(4):937-942.
    [19]薛美昭,仪慧兰.砷诱导蚕豆气孔保卫细胞死亡的毒性效应[J].生态学报,2014,34(5):1134-1139.
    [20]谷巍,施国新,巢建国,等.汞、镉、铜污染对鱼草细胞膜系统的毒害作用[J].应用生态学报,2008,19(5):1138-1143.
    [21]Farmer E E,Mueller M J.ROS-mediated lipid peroxidation and RES-activated signaling[J].Annual Review of Plant Biology,2013,64:429-450.
    [22]Janero D R.Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indexes of lipid-peroxidation and peroxidative tissueinjury[J].Free Radical Biology and Medicine,1990,9(6):515-540.
    [23]Berlett B S,Stadtman E R.Protein oxidation in aging,disease,and oxidative stress[J].Journal of Biological Chemistry,1997,272(33):20313-20316.
    [24]Romero-Puertas M C,Palma J M,Gómez M,et al.Cadmium causes the oxidative modification of proteins in pea plants[J].Plant,Cell&Environment,2002,25(5):677-686.
    [25]Mano J.Reactive carbonyl species:their production from lipid peroxides,action in environmental stress,and the detoxification mechanism[J].Plant Physiology and Biochemistry,2012,59(S1):90-97.
    [26]Mano J,Nagata M,Okamura S,et al.Identification of oxidatively modified proteins in salt-stressed Arabidopsis:a carbonyl-targeted proteomics approach[J].Plant Cell Physiology,2014,55(7):1233-1244.
    [27]Cadet J,Douki T,Gasparutto D,et al.Oxidative damage to DNA:formation,measurement and biochemical features[J].Mutation Research,2003,531(1/2):5-23.
    [28]Meira L B,Bugni J M,Green S L,et al.DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice[J].Journal of Clinical Investigation,2008,118(7):2516-2525.
    [29]Loft S,Danielsen P H,Mikkelsen L A,et al.Biomarkers of oxidative damage to DNA and repair[J].Biochemical Society Transactions,2008,36(5):1071-1076.
    [30]Eren E,Argüello J M.Arabidopsis HMA2,a divalent heavy metaltransporting PIB-type ATPase,is involved in cytoplasmic Zn2+homeostasis[J].Plant Physiology,2004,136(3):3712-3723.
    [31]Takahashi R,Bashir K,Ishimaru Y,et al.The role of heavy-metal ATPases,HMAs,in zinc and cadmium transport in rice[J].Plant Signaling&Behavior,2012,7(12):1605-1607.
    [32]Mills R F,Francini A,da Rocha P S F,et al.The plant P1B-type ATPase At HMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels[J].FEBS Letters,2005,579(3):783-791.
    [33]Kim D Y,Bovet L,Maeshima M,et al.The ABC transporter At PDR8is a cadmium extrusion pump conferring heavy metal resistance[J].Plant Journal,2007,50(2):207-218.
    [34]Hussain D,Haydon M J,Wang Y W,et al.P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis[J].Plant Cell,2004,16(5):1327-1339.
    [35]Farzadfar S,Zarinkamar F,Modarres-Sanavy S A,et al.Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L.plants[J].Environmental Science and Pollution Research,2013,20(3):1413-1422.
    [36]Moons A.Ospdr9,which encodes a PDR-type ABC transporter,is induced by heavy metals,hypoxic stress and redox perturbations in rice roots[J].FEBS Letters,2003,553(3):370-376.
    [37]Ueno D,Yamaji N,Ma J F.Further characterization of ferricphytosiderophore transporters Zm YS1 and Hv YS1 in maize and barley[J].Journal of Experimental Botany,2009,60(12):3513-3520.
    [38]Le J M,Schikora A,Mari S,et al.A loss-of-function mutation in At YSL1 reveals its role in iron and nicotianamine seed loading[J].The Plant Journal,2005,44(5):769-782.
    [39]Briat J F,Curie C,Gaymard F.Iron utilization and metabolism in plants[J].Current Opinion in Plant Biology,2007,10(3):276-282.
    [40]Koike S,Inoue H,Mizuno D,et al.Os YSL2 is a rice metalnicotianamine transporter that is regulated by iron and expressed in the phloem[J].The Plant Journal:for Cell and Molecular Biology,2004,39(3):415-424.
    [41]Vert G,Grotz N,Dédaldéchamp F,et al.IRT1,an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J].Plant Cell,2002,14(6):1223-1233.
    [42]Lee S,An G.Over-expression of Os IRT1 leads to increased iron and zinc accumulations in rice[J].Plant,Cell&Environment,2009,32(4):408-416.
    [43]Walker E L,Connolly E L.Time to pump iron:iron-deficiencysignaling mechanisms of higher plants[J].Current Opinion in Plant Biology,2008,11(5):530-535.
    [44]Sancenón V,Puig S,Mateu-Andrés I,et al.The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development[J].Journal of Biological Chemistry,2004,279(15):15348-15355.
    [45]Sancenón V,Puig S,Mira H,et al.Identification of a copper transporter family in Arabidopsis thaliana[J].Plant Molecular Biology,2003,51(4):577-587.
    [46]Desbrosses-Fonrouge A G,Voigt K,Schr9der A,et al.Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation[J].FEBS Letters,2005,579(19):4165-4174.
    [47]Dhankhar R,Sainger P A,Sainger M.Phytoextraction of zinc:physiological and molecular mechanism[J].Soil&Sediment Contamination,2012,21(1):115-133.
    [48]Becher M,Talke I N,Krall L,et al.Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri[J].The Plant Journal,2004,37(2):251-268.
    [49]Gravot A,Lieutaud A,Verret F,et al.At HMA3,a plant P1B-ATPase,functions as a Cd/Pb transporter in yeast[J].FEBSLetters,2004,561(1/2/3):22-28.
    [50]Bovet L,Eggmann T,Meylan-Bettex M,et al.Transcript levels of At MRPs after cadmium treatment:induction of At MRP3[J].Plant,Cell&Environment,2003,26(3):371-381.
    [51]Fulekar M H,Singh A,Bhaduri A M.Genetic engineering strategies for enhancing phytoremediation of heavy metals[J].African Journal of Biotechnology,2009,8(4):529-535.
    [52]Lanquar V,Lelièvre F,Bolte S,et al.Mobilization of vacuolar iron by At NRAMP3 and At NRAMP4 is essential for seed germination on low iron[J].EMBO Journal,2005,24(23):4041-4051.
    [53]Seigneurin-Berny D,Gravot A,Auroy P,et al.HMA1,a new CuATPase of the chloroplast envelope,is essential for growth under adverse light conditions[J].Journal of Biological Chemistry,2006,281(5):2882-2892.
    [54]Abdel-Ghany S E,Müller-MouléP,Niyogi K K,et al.Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts[J].The Plant Cell,2005,17(4):1233-1251.
    [55]Himelblau E,Amasino R M.Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence[J].Journal of Plant Physiology,2001,158(10):1317-1323.
    [56]Zhang X H,Wang L M,Zhang X,et al.Effects of arbuscular mycorrhizal fungi on upland rice oxidative stress induced by Cu and Pb contamination in soil[J].Agricultural Science and Technology,2014,15(1):123-126,131.
    [57]Tan S D,Huang H,Zhu M Y,et al.The negative effects of cadmium on Bermuda grass growth might be offset by submergence[J].Environmental Science and Pollution Research,2013,20(10):7433-7440.
    [58]BocˇováB,HuttováJ,Mistrík I,et al.Auxin signalling is involved in cadmium-induced glutathione-S-transferase activity in barley root[J].Acta Physiologiae Plantarum,2013,35(9):2685-2690.
    [59]Hayward A R,Coates K E,Galer A L,et al.Chelator profiling in Deschampsia cespitosa(L.)Beauv.reveals a Ni reaction,which is distinct from the ABA and cytokinin associated response to Cd[J].Plant Physiology and Biochemistry,2013,64(5):84-91.
    [60]Zawoznik M S,Groppa M D,Tomaro M L,et al.Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana[J].Plant Science,2007,173(2):190-197.
    [61]Masood A,Iqbal N,Khan N A.Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard[J].Plant,Cell and Environment,2012,35(3):524-533.
    [62]Malone C,Koeppe D E,Miller R J.Localization of lead accumulated by corn plants[J].Plant Physiology,1974,53(3):388-394.
    [63]Konno H,Nakashima S,Katoh K.Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema[J].Journal of Plant Physiology,2010,167(5):358-364.
    [64]Jiang W S,Liu D H.Pb-induced cellular defense system in the root meristematic cells of Allium sativum L[J].BMC Plant Biology,2010,10(1):1-8.
    [65]Zhu X F,Lei G J,Jiang T,et al.Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana[J].Planta,2012,236(4):989-997.
    [66]Zhu X F,Wang Z W,Dong F,et al.Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls[J].Journal of Hazardous Materials,2013,263:398-403.
    [67]Cobbett C S.A family of phytochelatin synthase genes from plant,fungal and animal species[J].Trends in Plant Science,1999,4(9):335-337.
    [68]Song W Y,Park J,Mendoza-Cózatl D G,et al.Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(49):21187-21192.
    [69]Mendoza-Cózatl D G,Jobe T O,Hauser F.Long-distance transport,vacuolar sequestration,tolerance,and transcriptional responses induced by cadmium and arsenic[J].Current Opinion in Plant Biology,2011,14(5):554-562.
    [70]Park J,Song W Y,Ko D,et al.The phytochelatin transporters At ABCC1 and At ABCC2 mediate tolerance to cadmium and mercury[J].The Plant Journal,2012,69(2):278-288.
    [71]Huang J,Zhang Y,Peng J S,et al.Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis[J].Plant Physiology,2012,158(4):1779-1788.
    [72]Grill E,L9ffler S,Winnacker E L,et al.Phytochelatins,the heavymetal-binding peptides of plants,are synthesized from glutathione by a specificγ-glutamylcysteine dipeptidyl transpeptidase(phytochelatin synthase)[J].Proceedings of the National Academy of Sciences of the United States of America,1989,86(18):6838-6842.
    [73]Verma K,Mehta S K,Shekhawat G S.Nitric oxide(NO)counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species(ROS)in Brassica juncea:cross-talk between ROS,NO and antioxidant responses[J].BioMetals,2013,26(2):255-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700