用户名: 密码: 验证码:
不同水力负荷下薄荷去除养殖水氮磷研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research of Mentha arvensis on Removal of Nitrogen and Phosphorous from Aquaculture Water under Different Hydraulic Loadings
  • 作者:陈检锋 ; 王志远 ; 尹梅 ; 陈华 ; 苏帆 ; 卫坚强 ; 高朝双 ; 洪丽芳 ; 付利波
  • 英文作者:CHEN Jianfeng;WANG Zhiyuan;YIN Mei;CHEN Hua;SU Fan;WEI Jianqiang;GAO Chaoshuang;HONG Lifang;FU Libo;Agricultural Environment and Resources Institute,Yunnan Academy of Agricultural Sciences;College of Resources and Environment, Yunnan Agriculture University;Agriculture Comprehensive Service Center of Banqiao Town in Xuanwei City;
  • 关键词:薄荷 ; 鱼塘养殖水 ; 水力负荷 ; 氮磷吸收 ; 去除贡献
  • 英文关键词:Mentha arvensis;;aquaculture water;;hydraulic loading;;nitrogen and phosphorus uptake;;removal contribution
  • 中文刊名:环境科学与技术
  • 英文刊名:Environmental Science & Technology
  • 机构:云南省农业科学院农业环境资源研究所;云南农业大学资源与环境学院;宣威市板桥街道农业综合服务中心;
  • 出版日期:2019-06-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:S1
  • 基金:国家重点研发计划(2017YFD0800505);; 国家水专项(2012ZX07102-003)
  • 语种:中文;
  • 页:26-31
  • 页数:6
  • CN:42-1245/X
  • ISSN:1003-6504
  • 分类号:X714;X173
摘要
采用小区试验方法,研究了不同水力负荷条件下薄荷(Mentha arvensis)对鱼塘养殖循环水氮、磷的吸收能力和去除作用。结果表明,当水力负荷为0.35~1.40 m~3/(m~2·d)时,薄荷的生物量累积增加1.40~1.95 kg/m~2,产量为11 098~15 177 kg/hm~2;在水力负荷0.35 m~3/(m~2·d)时,薄荷组织中氮含量表现为地上部>地下部,根冠比(地上部/地下部)为1.05;而磷含量在4种水力负荷下均表现为地上部<地下部,随水力负荷的增大,根冠比分别为0.93、0.86、0.69、0.71。整株的氮、磷平均含量在4种水力负荷下分别在14.43~17.23和3.09~3.35 mg/g;薄荷对氮、磷的吸收总量在水力负荷1.05 m~3/(m~2·d)时均达到最大,分别为36.20和7.53kg/hm~2;在水力负荷0.35 m~3/(m~2·d)时,薄荷吸收作用对系统去除水体氮、磷的贡献率达最大,分别为15.95%和22.12%。
        The nitrogen and phosphorus uptake and removal abilities of Mentha arvensis eutrophic water under different hydraulic loadings, were comparatively studied by simulation experiments. The results showed that when hydraulic loading was 0.35~1.40 m~3/(m~2·d), the total biomass of Mentha arvensis was increased by 1.40~1.95 kg/m~2, Yield was 11 098~15 177 kg/hm~2.The nitrogen distributions in Mentha arvensis were shown as above ground>below ground when hydraulic loading was 0.35 m~3/(m~2·d), the(above ground/below ground) ratio was 1.05. the phosphorous distributions were shown as above ground
引文
[1]农业部渔业局.2013中国渔业统计年鉴[M].北京:中国农业出版社.The Ministry of Agriculture Fisheries Bureau.2013 China Yearbook of Fishery Statistics[M].Beijing:China Agriculture Press.
    [2]叶乃好,庄志猛,王清印.水产健康养殖理念与发展对策[J].中国工程科学,2016,18(3):101-104.Ye Naihao,Zhuang Zhimeng,Wang Qingyin.Development strategy for realizing the healthy aquaculture industry concept[J].Engineering Sciences,2016,18(3):101-104.
    [3]黄翔峰,王珅,陈国鑫,等.水生动植物组合对水产养殖废水的净化能力[J].水处理技术,2015,41(2):62-66.Huang Xiangfeng,Wang Shen,Chen Guoxin,et al.The capacity for purifying aquaculture wastewater by aquatic plants and aquatic filter feeders[J].Technology of Water Treatment,2015,41(2):62-66.
    [4]Brix H.How green are aquaeulture construeted wetlands and corrventional waster treatment system[J].Watse Technology,1999,40(3):45-50.
    [5]章星异,朱环,李怀正,等.水产养殖水生物处理技术研究现状与展望[J].水处理技术,2010,1(1):25-28.Zhang Xingyi,Zhu Huan,Li Huaizheng,et al.Advances in aquaculture water biological treatment technology[J].Technology of Water Treatment,2010,1(1):25-28.
    [6]李文祥,李为,林明利,等.浮床水蕹菜对养殖水体中营养物的去除效果研究[J].环境科学学报,2011,31(8):1671-1674.Li Wenxiang,Li Wei,Lin Mingli,et al.In situ nutrient removal from aquaculture wastewater by the aquatic vegetable Ipomoea aquatica on floating beds[J].Acta Scientiae Circumstantiae,2011,31(8):1671-1674.
    [7]李先宁,宋海亮,吕锡武,等.水耕植物过滤法去除氮磷的影响因素及途径[J].环境科学,2007,28(5):982-986.Li Xianning,Song Hailing,Lyu Xiwu,et al.Removal pathway and influence factors of hydroponic bio-filter method for nitrogen and phosphorus[J].Environmental Science2007,28(5):982-986.
    [8]孟宪粉,张家澜.薄荷优质高产栽培技术[J].种业导刊2014(11):16-17.Meng Xianfen,Zhang Jialan.High quality and high yield cultivation techniques of Mentha arvensis[J].Journal of Seed Industry Guide,2014(11):16-17.
    [9]杨敏杰,张丽琴,李锡香,等.云南野生食用香料植物资源[J].中国蔬菜,2005(4):32-33.
    [10]王斌,周亚平.三种水生植物对模拟污水中氮、磷的生物净化效果[J].湖北农业科学,2014,53(20):4835-4837.Wang Bin,Zhou Yaping.Biological purification effects of three aquatic plants on N and P in simulated wastewater[J]Hubei Agricultural Sciences,2014,53(20):4835-4837.
    [11]陈建军,席银,廖再毅,等.水力负荷和气温对生态滤池处理农户灰水的影响[J].农业环境科学学报,2015,34(10):2012-2018.Chen Jianjun,Xi Yin,Liao Zaiyi,et al.Impacts of hydraulic loading rate and air temperature on eco-filter based treatment of greywater generated in a rural household[J].Journal of Agro-Environment Science,2015,34(10):2012-2018.
    [12]刘海琴,邱园园,闫学政,等.4种水生植物深度净化村镇生活污水厂尾水效果研究[J].中国生态农业学报,2018,26(4):616-626.Liu Haiqin,Qiu Yuanyuan,Yan Xuezheng,et al.The deep purification of four aquatic macrophytes for tailrace of rural sewage treatment plants[J].Chinese Journal of Eco-Agriculture,2018,26(4):616-626.
    [13]梁康,王启烁,王飞华,等.人工湿地处理生活污水的研究进展[J].农业环境科学学报,2014,33(3):422-428.Liang Kang,Wang Qishuo,Wang Feihua,et al.Research progresses in domestic wastewater treatment by constructed wetlands[J].Journal of Agro-Environment Science,2014,33(3):422-428.
    [14]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.Lu Rukun.Soil Agricultural Chemical Analysis Method[M]Beijing:China Agricultural Science and Technology Press2000.
    [15]吴建之,葛滢,王晓月.过硫酸钾氧化吸光光度法测定植物总氮[J].理化检验:化学分册,2000,36(4):166-167.Wu Jianzhi,Ge Ying,Wang Xiaoyue.Uv absorptiophotometric determination of total nitrogen in plant after K2S2O8oxidation[J].Physical Testing and Chemical Analysis Part:Chemical Analysis,2000,36(4):166-167.
    [16]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.The State Environmental Protection Administration of"Water and Wastewater Monitoring and Analysis Methods"Editorial Committee.Water and Wastewater Monitoring and Analysis Methods[M].4th Edition.Beijing:China Environmental Science Press,2002.
    [17]张华俊,王妙,王广义,等.凤眼莲对黑臭水体污染物处理效果的研究[J].环境科学导刊,2017,36(4):31-34,53.
    [18]Xie Yonghong,Yu Dan.The significance of lateral roots in phosphorus(P)acquisition of water hyacinth(Eichhornia crassipes)[J].Aquatic Botany,2003,75:311-321.
    [19]兰木羚,王子芳,高明,等.不同水力负荷下生物质灰渣填料系统处理生活污水的研究[J].水土保持学报,2014,28(6):289-292.Lan Muling,Wang Zifang,Gao Ming,et al.Study on biomass ash filling system on sewage treatment under different hydraulic loading[J].Journal of Soil and Water Conservation,2014,28(6):289-292.
    [20]白保勋,沈植国,卞新民,等.林地生态处理系统中欧美107杨与中林46杨对生活污水的响应[J].生态科学,2014,33(5):893-898.Bai Baoxun,Shen Zhiguo,Bian Xinmin,et al.Responses of poplar Euramerican 107 and Zhonglin 46 to domestic wastewater in woodland eco-treatment system[J].Ecological Science,2014,33(5):893-898.
    [21]黄小龙,郭艳敏,万斌,等.沉水植物恢复对城市富营养化湖泊生态环境影响[J].环境工程,2018,36(7):17-21.Huang Xiaolong,Guo Yanming,Wan Bin,et al.Effect of submerged macrophytes restoration on the ecological environment of urban eutrophic lake[J].Environmental Engineering,2018,36(7):17-21.
    [22]冯建波.湿地塘对富营养化河道的处理效果分析[J].环境科学与技术,2018,41(7):199-204.Feng Jianbo.Analysis of treatment effect of wetland pond on eutrophication channel[J].Environmental Science&Technology,2018,41(7):199-204.
    [23]孙瑞莲,刘健.3种挺水植物对污水的净化效果及生理响应[J].生态环境学报,2018,27(5):926-932.Sun Ruilian,Liu Jian.Physiological response of emergent hydrophytes to wastewater stress and their potential for reducing COD and nutrients[J].Ecology and Environmental Sciences,2018,27(5):926-932.
    [24]常雅军,张亚,刘晓静,等.碱蓬对不同程度富营养化养殖海水的净化效果[J].生态与农村环境学报,2017,33(11):1023-1028.
    [25]金卫红,付融冰,顾国维.人工湿地中植物生长特性及其对TN和TP的吸收[J].环境科学研究,2007,20(3):75-80.Jin Weihong,Fu Rongbing,Gu Guowei.Plant growth characteristics and nutrient uptake from eutrophic water in constructed wetlands[J].Research of Environmental Sciences2007,20(3):75-80.
    [26]张芳,易能,邸攀攀,等.不同水生植物的除氮效率及对生物脱氮过程的调节作用[J].生态与农村环境学报,2017,33(2):174-180.Zhang Fang,Yi Neng,Di Panpan,et al.Nitrogen removal efficiency and control of bio-denitrification process of aquatic plants[J].Journal of Ecology and Rural Environment,201733(2):174-180.
    [27]朱静平,程凯,孙丽.水培植物净化系统不同氮磷去除作用的贡献[J].环境科学与技术,2011,34(5):176-178.Zhu Jingping,Cheng Kai,Sun Li.Contribution of different roles on total nitrogen and total phosphorus removal in aquatic plants purification system[J].Environmental Science&Technology,2011,34(5):176-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700