用户名: 密码: 验证码:
DBD转化CO_2的研究现状及进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Advances of CO_2 Conversion Based on DBD
  • 作者:丁红蕾 ; 郭得通 ; 潘卫国 ; 丁承钢 ; 郭士义 ; 潘衍行 ; 周柒 ; 杜威
  • 英文作者:DING Honglei;GUO Detong;PAN Weiguo;DING Chenggang;GUO Shiyi;PAN Yanxing;ZHOU Qi;DU Wei;Shanghai University of Electric Power;Shanghai Environmental Protection Engineering Technology Research Center;Shanghai Electric Power Station Environmental Protection Engineering Co., Ltd.;
  • 关键词:介电阻挡放电(DBD) ; CO2转化 ; 等离子体 ; 催化剂
  • 英文关键词:dielectric barrier discharge (DBD);;CO2 conversion;;plasma;;catalyst
  • 中文刊名:发电技术
  • 英文刊名:Power Generation Technology
  • 机构:上海电力学院能源与机械工程学院;上海发电环保工程技术研究中心;上海电气电站环保工程有限公司;
  • 出版日期:2019-10-31
  • 出版单位:发电技术
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划项目(2018YFB0604204)~~
  • 语种:中文;
  • 页:83-89
  • 页数:7
  • CN:33-1405/TK
  • ISSN:2096-4528
  • 分类号:X701
摘要
为了更高效地进行CO_2的转化利用,许多学者开展了多种CO_2转化方法的研究。介电阻挡放电(dielectric barrier discharge,DBD)能在低温常压的环境下还原CO_2,是CO_2转化利用的重要方法之一。为了设计出更好的DBD反应器、更佳的反应条件和催化剂,总结了近年来DBD转化CO_2的相关研究。通过分析不同研究中过程参数、稀释性气体和催化剂等因素对CO_2转化量和能量效率的影响,发现催化剂能大幅度提高DBD转化CO_2的反应效率,并介绍了DBD中一些常用的催化剂。最后简要分析了此类研究的可能发展趋势。
        In order to convert CO_2 more efficiently, many scholars have carried out research on various CO_2 conversion methods. Dielectric barrier discharge(DBD) is one of the important methods of CO_2 conversion and utilization, it can reduce CO_2 under the condition of low temperature and normal pressure. In order to design a better DBD reactor, reaction conditions and catalysts, this paper summarized the researches on CO_2 conversion based on DBD in recent years. The effects of process parameters, diluting gases and catalysts on CO_2 conversion and energy efficiency in different studies were analyzed. It was found that the catalyst can greatly improve the efficiency of CO_2 conversion by DBD, and introduced some commonly usedcatalysts in DBD. Finally, the possible development trend of CO_2 conversion by DBD was briefly analyzed.
引文
[1] Rogelj J,Den E M,H?hne N,et al.Paris agreement climate proposals need a boost to keep warming well below 2℃[J].Nature,2016,534(7609):631-639.
    [2]毛健雄.燃煤电站CO2减排技术的探讨[J].分布式能源,2017,2(1):35-43.
    [3] Zheng Y,Wen Q,Li F,et al.Energy related CO2conversion and utilization:Advanced materials/nanomaterials,reaction mechanisms and technologies[J].Nano Energy,2017,4:512-539.
    [4]孔飞,王思韬,马翊洋,等.等离子体改性对环氧树脂材料表面电荷动态特性的影响[J].广东电力,2018,31(8):161-166.
    [5] Bogaerts A,Kozak T,van Laer K,et al.Plasma-based conversion of CO2:current status and future challenges[J].Faraday Discussions,2015,183:217-232.
    [6] Sergey Y S,Hwaung L,Song H K,et al.The decomposition of CO2 in glow discharge[J].Journal of Chemical Engineering,2002,19(4):564-566.
    [7] Horvath,G,Skalny J D,Mason N J.FTIR study of decomposition of carbon dioxide in DC corona discharges[J].Journal of Physics D:Applied Physics,2008,41(22):207-225
    [8] Abramski K M,Colley A D,Baker H J,et al.Power scaling of large area transverse radio frequency discharge CO2 lasers[J].Applied Physics Letters,1989,54(19):1833-1835.
    [9] Wang W Z,Mei D H,Tu X,et al.Gliding arc plasma for CO2 conversion:better insights by a combined experimental and modelling approach[J]. Chemical Engineering Journal,2017,330:11-25.
    [10] Chen G X,Godfroid T,Britun N,et al.Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge[J].Applied Catalysis B:Environmental,2017,214:114-125.
    [11] Sadat H, Dubus N, Tatibouet J M. Temperature runaway in a pulsed dielectric barrier discharge reactor[J].Applied Thermal Engineering,2012,37:324-328.
    [12] Snoeckx R,Bogaerts A.Plasma technology:a novel solution for CO2 conversion[J]. Chemical Society Reviews,2017,46(19):5805-5863.
    [13] Mei D H,Tu X.Conversion of CO2 in a cylindrical dielectric barrier discharge reactor:effects of plasma processing parameters and reactor design[J].Journal of CO2 Utilization,2017,19:68-78.
    [14] Ray D,Saha R,Subrahmanyam C.DBD plasma assisted CO2 decomposition:in?uence of diluent gases[J].Catalysis,2017,7(9):244-250.
    [15] Wang L,Yi Y H,Guo H C,et al.Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2[J]. ACS Catalysis,2017,8(1):90-100.
    [16] Nunnally T, Gutsol K, Rabinovich A, et al.Dissociation of CO2 in a low current gliding arc plasmatron[J].Journal of Physics D:Applied Physics,2011,44(27):274-290.
    [17] Fridman A. Plasma Chemistry[M]. New York:Cambridge University Press,2008.
    [18] Chen P,Shen J,Ran T C,et al.Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology,2017,19(12):123-128.
    [19] Snoeckx R,Heijkers S,Wesenbeeck Van K,et al.CO2conversion in a dielectric barrier discharge plasma:N2in the mix as a helping hand or problematic impurity[J].Energy&Environmental Science,2016,9(3):999-1011.
    [20] Xu S J,Whitehead J C,Martin P A.CO2 conversion in a non-thermal, barium titanate packed bed plasma reactor:the effect of dilution by Ar and N2[J].Chemical Engineering Journal,2017,327:764-773.
    [21] Zeng Y X,Tu X.Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor:effect of argon addition[J].Journal of Physics D:Applied Physics,2017,50(18):184-190.
    [22] Mei D H,Zhu X B,He Y L,et al.Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor:understanding the effect of packing materials[J].Plasma Sources Science&Technology,2015,24(1):11-15.
    [23] Ray D,Subrahmanyam C.CO2 decomposition in a packed DBD plasma reactor:influence of packing materials[J].RSC Advances,2016,6(96):93997-93999.
    [24] Tu X,Whitehead J C.Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge:understanding the synergistic effect at low temperature[J].Applied Catalysis B:Environmental,2012,125:439-448.
    [25] Kattel S,Yan B H,Chen J G,et al.CO2 hydrogenation on Pt,Pt/SiO2 and Pt/TiO2:importance of synergy between Pt and oxide support[J].Journal of Catalysis,2016,343:115-126.
    [26] Li K,Yin C,Zheng Y,et al.DFT Study on the methane synthesis from syngas on a Cerium-Doped Ni(111)surface[J].Journal of Physical Chemistry C,2016,120(40):23030-23043.
    [27] Choe S J,Kang H J,Kim S J,et al.Adsorbed carbon formation and carbon hydrogenation for CO2methanation on the Ni(111)surface:ASED-MO study[J].Bulletin of the Korean Chemical Society,2005,26(11):1682-1688.
    [28] Zeng Y X,Zhu X B,Mei D H,et al.Plasma-catalytic dry reforming of methane overγ-Al2O3 supported metal catalysts[J].Catalysis Today,2015,256:80-87.
    [29]黄秋实.Ni基催化剂与等离子体协同作用下的CO2甲烷化[D].大连:大连理工大学,2017.
    [30]杨志强.低温等离子体协同催化CO2甲烷化反应研究[D].大连:大连理工大学,2014.
    [31] Zeng Y X,Tu X.Plasma-catalytic CO2 hydrogenation at low temperatures[J].IEEE Transactions on Plasma Science,2016,44(4):405-411.
    [32] Falbo L,Martinelli M,Visconti C G,et al.Kinetics of CO2 methanation on a Ru-based catalyst at process conditions relevant for power-to-gas applications[J].Applied Catalysis B:Environmental,2018,225:354-363.
    [33] Garbarino G,Bellotti D,Finocchio E,et al.Methanation of carbon dioxide on Ru/Al2O3:catalytic activity and infrared study[J].Catalysis Today,2016,277:21-28.
    [34] Mebrahtu C,Abate S,Perathoner S,et al.CO2methanation over Ni catalysts based on ternary and quaternary mixed oxide:a comparison and analysis of the structure-activity relationships[J].Catalysis Today,2018,304:181-189.
    [35] Lim Y G,McGregor J,Sederman A J,et al.Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor[J]. Chemical Engineering Science,2016,141:28-45.
    [36] Ocampo F,Louis B,Roger A C,et al.Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method[J].Applied Catalysis A:General,2009,369:90-96.
    [37] Le A T,Kim S M,Lee S H,et al.CO and CO2methanation over supported Ni catalysts[J] Catalysis Today,2017,293/294:89-96.
    [38] Jwa E,Lee S B,Lee H W,et al.Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts[J]. Fuel Processing Technology, 2013,108(6):89-93.
    [39] Mei D H, Zhu X B, Wu C F, et al. Plasmaphotocatalytic conversion of CO2 at low temperatures:understanding the synergistic effect of plasmacatalysis[J].Applied Catalysis B:Environmental,2016,182:525-532.
    [40] Ahmad W,Younis M N,Shawabkeh R,et al.Synthesis of lanthanide series(La,Ce,Pr,Eu&Gd)promoted Ni/γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure[J].Catalysis Communications,2017,100:121-126.
    [41]张丽.等离子体和助剂改性镍基催化剂二氧化碳甲烷化研究[D].天津:天津大学,2015.
    [42] Mihet M,Lazar M D.Methanation of CO2 on Ni/-Al2O3:influence of Pt, Pd or Rh promotion[J].Catalysis Today,2016,304:286-290.
    [43] Liu Q,Gu F N,Gao J J,et al.Ni/Al2O3-ZrO2 catalyst for CO2 methanation:the role ofγ-(Al,Zr)2O3formation[J].Catalysis Today,2018,306:294-299.
    [44] Lim J Y,McGregor G,Sederman A J,et al.The role of the Boudouard and water-gas shift reactions in the methanation of CO or CO2 over Ni/γ-Al2O3 catalyst[J]. Chemical Engineering Science, 2016, 152:754-766.
    [45] Mebrahtu C,Abate S,Chen S M,et al.Enhanced catalytic activity of Fe-promoted Ni overγ-Al2O3nanosheets for CO2 methanation[J]. Energy Technology,2017,6(6):1196-1207.
    [46] Benrabbah R,Cavaniol C,Liu H,et al.Plasma DBD activated ceria-zirconia-promoted Ni-catalysts for plasma catalytic CO2 hydrogenation at low temperature[J].Catalysis Communications,2017,89:73-76.
    [47] Nizio M,Albarazi A,Cavadias S,et al.Hybrid plasmacatalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts[J].International Journal of Hydrogen Energy, 2016, 41(27):11584-11592.
    [48]聂望欣,邹秀晶,汪学广,等.介孔γ-Al2O3负载的高分散Ni-Ce-Zr氧化物的制备及其二氧化碳甲烷化研究(英文)[J].物理化学学报,2016,32(11):2803-2810.
    [49] Bie C D,Dijk J V,Bogaerts A.CO2 hydrogenation in a dielectric barrier discharge plasma revealed[J].Journal of Physical Chemistry C,2016,120(44):1123-1129.
    [50] Studt F,Behrens M,Kunkes E L,et al.The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts[J].Chem Cat Chem,2015,44(27):182-190.
    [51] Eliasson B,Kogelschatz U,Xue B,et al.Hydrogenation of carbon dioxide to methanol with a dischargeactivated catalyst[J]. Industrial&Engineering Chemistry Research,1998,37(8):3350-3357.
    [52] Bradford M C J,Vannice M A.CO2 reforming of CH4[J].Catalysis Reviews,2007,41(1):1-42.
    [53] Bie C D,Dijk J V,Bogaerts A.The dominant pathways for the conversion of methane into oxygenates and syngas in an atmospheric pressure dielectric barrier discharge[J].Journal of Physical Chemistry C,2015,119(39):22331-22350.
    [54] Zeng Y X,Wang L,Wu C F,et al.Low temperature reforming of biogas over K-,Mg-and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas:understanding the plasma-catalytic synergy[J].Applied Catalysis B:Environmental,2018,224:469-478.
    [55] Amin M H,Putla S,Hamid S B,et al.Understanding the role of lanthanide promoters on the structure:activity of nanosized Ni/-Al2O3 catalysts in carbon dioxide reforming of methane[J].Applied Catalysis A:General,2015,492:160-168.
    [56] Pham M H,Goujard V,Tatibou?t J M,et al.Activation of methane and carbon dioxide in dielectric-barrier discharge-plasma reactor to produce hydrocarbons—influence of La2O3/γ-Al2O3 catalyst[J]. Catalysis Today,2011,171:67-71.
    [57] Ray D,Reddy P M K,Subrahmanyam C.Ni-Mn/γ-Al2O3 assisted plasma dry reforming of methane[J].Catalysis Today,2017,309:212-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700