用户名: 密码: 验证码:
作物内禀水分利用效率变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation of Intrinsic Water Use Efficiency for Crop
  • 作者:赵福年 ; 杨红燕 ; 王润元 ; 张凯 ; 齐月 ; 陈斐 ; 王鹤龄 ; 赵鸿
  • 英文作者:ZHAO Funian;YANG Hongyan;WANG Runyuan;ZHANG Kai;QI Yue;CHEN Fei;WANG Heling;ZHAO Hong;Key Laboratory of Arid Climate Change and Disaster Reduction of China Meteorological Administration/Key Laboratory of Arid Climatic Change and Disaster Reduction of Gansu Province/Lanzhou Institute of Arid Meteorology;Liaocheng Soil Fertilizer Station;
  • 关键词:光合速率 ; 干旱半干旱区 ; 水分利用效率 ; 气孔导度模型
  • 英文关键词:photosynthesis rate;;arid and semi-arid areas;;water use efficiency;;stomatal conductance model
  • 中文刊名:核农学报
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:中国气象局兰州干旱气象研究所/甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点实验室;聊城市土壤肥料工作站;
  • 出版日期:2019-07-22 17:03
  • 出版单位:核农学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(41775107、41505099);; 国家公益性行业(气象)科研专项(GYHY201506001-2);; 甘肃省气象局气象科研项目(GSMAMs2018-14)
  • 语种:中文;
  • 页:213-221
  • 页数:9
  • CN:11-2265/S
  • ISSN:1000-8551
  • 分类号:S513;S512.1
摘要
为探究不同作物类型内禀水分利用效率(IWUE)之间的区别及其环境影响因素,本研究以春玉米科河28和春小麦定西新24为试验材料,通过桶栽和小区试验,设置水分充足和干旱胁迫2个处理,观测玉米、小麦在不同水分和不同气象条件下的叶片光合生理过程并收集文献资料,分析比较C_3和C_4作物之间,以及不同环境条件下相同作物IWUE的变化特征及气孔导度模型斜率。结果表明,C_4作物玉米较C_3作物小麦具有更高的IWUE;有利的环境条件下,小麦IWUE较低,而不利的环境条件下,小麦倾向于提高IWUE;生长在湿润区的C_3作物IWUE较低,而半干旱区的C_3作物IWUE较高;小麦的气孔导度模型斜率高于玉米,同时不利的环境条件及干燥的气候条件下,作物倾向于降低气孔导度模型斜率。综上,作物气孔调节方式具有优化利用水分的功能,在不利的环境条件下,作物的水分利用方式倾向于保守,从而在较小的水分消耗下,获得最大的产出。本研究结果为区域作物品种选择及布局提供了参考依据。
        In order to explore the difference of intrinsic water use efficiency( IWUE) between different crop types and its environmental impact factors,Kehe28 for maize and Dingxixin24 for wheat were used as experimental materials,through the barrel and plot test,the two set enough moisture and drought stress treatment,observation of corn,wheat in different water content and photosynthetic physiological processes under different meteorological conditions and literature information collection,analysis and comparison between C_3 and C_4 plants,under different environmental conditions and characteristics of the same crop IWUE of slope and stomatal conductance model. The results showed that C_4 corn had higher IWUE than C_3 wheat. Under favorable environmental conditions,the IWUE of wheat was lower,while under unfavorable environmental conditions,wheat tended to increase the IWUE. Meanwhile,C_3 crop growing in humid climate had lower IWUE than that growing in semi-arid climate. The slope of stomatal conductance model of maize was higher than wheat. Additionally,under stressed conditions and semi-arid climate,crops tend to reduce the slope of stomatal conductance model. In conclusion,this research indicates that stomatal conductance of crop could regulate its aperture to maximize water use. Crops tend to conserve water use under stressed conditions,whereas it consumes little water as much as possible under optimal condition to maximize assimilation. The results could provide a basis for crop variety selection and allocation in a research area.
引文
[1]Cook BⅠ,Smerdon J E,Seager R,Coats S.Global warming and21st century drying[J].Climate Dynamics,2014,43(9/10):2607-2627
    [2]Dai A.Increasing drought under global warming in observations and models[J].Nature Climate Change,2012,3(1):52-58
    [3]Passioura J B,Angus J F.Improving productivity of crops in waterlimited environments[J].Advances in Agronomy,2010,106(10):37-75
    [4]戴君虎,王梦麦,王焕炯,白洁,崔海亭.近50年中国西北东部半湿润、半干旱过渡带气候变化及生态影响[J].第四纪研究,2010,29(3):920-930
    [5]侯贤清,李荣,何文寿,马琨,代晓华.保水剂对旱作马铃薯产量及水分利用效率的影响[J].核农学报,2018,32(5):1016-1022
    [6]雷俊,张凯,姚玉璧,牛海洋,石界,李强,李文举,赵鸿.半干旱区黑膜覆盖对马铃薯光合特性及产量的影响[J].干旱气象,2017,35(6):1036-1041
    [7]温斐斐,孙敏,邓联峰,赵维峰,高志强.旱地小麦休闲期深翻覆盖对土壤水分及其利用效率的影响[J].中国生态农业学报,2013,21(7):1358-1364
    [8]Linderson M L,Mikkelsen T N,Ibrom A,Lindroth A,Ro-Poulsen H,Pilegaard K.Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in canopy light distribution[J].Agricultural and Forest Meteorology,2012,152:201-211
    [9]杨文平,郭天财,刘胜波,朱云集,王晨阳,王永华.两种穗型冬小麦品种旗叶光合特性和水分利用对光强的响应[J].华北农学报,2008,23(2):9-11
    [10]魏小平,王根轩,吴冬秀.干旱和CO2浓度升高对不同春小麦光合作用和气孔阻力及水分蒸腾效率的影响[J].兰州大学学报(自然科学版),2005,41(6):42-46
    [11]王晨光,郝兴宇,李红英,韩洲怀,韩雪,宗毓铮,李萍.CO2浓度升高对大豆光合作用和叶绿素荧光的影响[J].核农学报,2015,29(8):1583-1588
    [12]Wong S C,CowanⅠR,Farquhar G D.Leaf conductance in relation to rate of CO2assimilation.Ⅲ.Influences of water stress and photoinhibition[J].Plant physiology,1985,78(4):830-834
    [13]Fischer R A,Turner N C.Plant productivity in the arid and semiarid zones[J].Annual of Review Plant Physiology,1978,29(1):277-317
    [14]Wong S C,CowanⅠR,Farquhar G D.Stomatal conductance correlates with photosynthetic capacity[J].Nature,1979,282(5737):424-426
    [15]Ball J T,Woodrow I E,Berry J A.A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[C]//Progress in Photosynthesis Research:Proceedings of the VIIth International Congress on Photosynthesis,Rhode Island:Springer,1987:221-224
    [16]Leuning R.A critical appraisal of a combined stomatalphotosynthesis model for C3plants[J].Plant Cell and Environment,1995,18(4):339-355
    [17]Medlyn B E,Duursma R A,Eamus D,Ellsworth D S,PrenticeⅠC,Barton CⅤM,Crous K Y,Angelis P,Freeman M,Wingate L.Reconciling the optimal and empirical approaches to modelling stomatal conductance[J].Global Change Biology,2011,17(6):2134-2144
    [18]Collatz G J,Ball J T,Grivet C,Berry J A.Physiological and environmental-regulation of stomatal conductance,photosynthesis and transpiration-a model that includes a laminar boundary-layer[J].Agricultural and Forest Meteorolology,1991,54(2/3/4):107-136
    [19]Baldocchi D.An analytical solution for coupled leaf photosynthesis and stomatal conductance models[J].Tree Physiology,1994,14(7/8/9):1069-1079
    [20]Tuzet A,Perrier A,Leuning R.A coupled model of stomatal conductance,photosynthesis and transpiration[J].Plant Cell and Environment,2003,26(7):1097-1116
    [21]Yu Q,Zhang Y G,Liu Y F,Shi P L.Simulation of the stomatal conductance of winter wheat in response to light,temperature and CO2changes[J].Annual Botony London,2004,93(4):435-441
    [22]Sellers P J,Dickinson R E,Randall D A,Betts A K.Modeling the exchanges of energy,water,and carbon between continents and the atmosphere[J].Science,1997,275(5299):502-509
    [23]Xu L K,Baldocchi D D.Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak(Quercus douglasii)under prolonged summer drought and high temperature[J].Tree Physiology,2003,23(13):865-877
    [24]Tenhunen J D,Serra A S,Harley P C,Dougherty R L,Reynolds JF.Factors influencing carbon fixation and water use by mediterranean sclerophyll shrubs during summer drought[J].Oecologia,1990,82(3):381-393
    [25]Brodribb T.Dynamics of changing intercellular CO2concenTration(Ci)during drought and determination of minimum functional ci[J].Plant Physiology,1996,111(1):179-187
    [26]Baldocchi D D.Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the1995 summer drought[J].Plant Cell Environment,1997,20(9):1108-1122
    [27]GutschickⅤP,Simonneau T.Modelling stomatal conductanceof field-grown sunflower under varying soil water content and leafenvironment:comparison of three models of stomatal response toleaf environment and coupling with an abscisic acid-based modelof stomatal response to soil drying[J].Plant Cell and Environment,2002,25(11):1423-1434
    [28]Medrano H,Esalona J M,Bota J,Gulias J,Flexas J.Regulation of photosynthesis of C3plant in response to progressive drought:Stomatal conductance as a reference parameter[J].Annual Botany,2002,89(7):895-905
    [29]Lin Y S,Medlyn B E,Duursma R A,PrenticeⅠC,Wang H,Baig S,Eamus D,DiosⅤR D,Mitchell P,Ellsworth D S.Optimal stomatal behaviour around the world[J].Nature Climate Change,2015,5(5):324-330
    [30]任鸿瑞,罗毅.鲁西北平原冬小麦和夏玉米耗水量的实验研究[J].灌溉排水学报,2004,23(4):37-39
    [31]Broeckx L S,Fichot R,Verlinden M S,Ceulemans R.Seasonal variations in photosynthesis,in trinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation[J].Tree Physiology,2014,34(7):701
    [32]Cifre J,Bota J,Escalona J M,Medrano H,Flexas J.Physiological tools for irrigation scheduling in grapevine(Vitis vinifera L.):An open gate to improve water-use efficiency?[J].Agriculture Ecosystems and Environment,2005,106(2/3):159-170
    [33]Nikolov N T,Massman W J,Schoettle A W.Coupling biochemical and biophysical processes at the leaf level:An equilibrium photosynthesis model for leaves of C3plants[J].Ecology Model,1995,80(2/3):205-235
    [34]Trevor K,Santi S,Carlos G.Soil water stress and coupled photosynthesis-conductance models:Bridging the gap between conflicting reports on the relative roles of stomatal,mesophyll conductance and biochemical limitations to photosynthesis[J].Agricultural and Forest Meteorology,2010,150(3):443-453
    [35]Egea G,Verhoef A,Vidale P L.Towards an improved and more flexible representation of water stress in coupled photosynthesisstomatal conductance models[J].Agricultural and Forest Meteorology,2011,151(10):1370-1384
    [36]Damour G,Simonneau T,Cochard H,Urban L.An overview of models of stomatal conductance at the leaf level[J].Plant Cell Environment,2010,33(9):1419-1438
    [37]Gilbert M E,Zwieniecki M A,Holbrook N M.Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought[J].Journal Experiment Botany,2011,62(8):2875-2887
    [38]Singh S K,Reddy K R.Regulation of photosynthesis,fluorescence,stomatal conductance and water-use efficiency of cowpea under drought[J].Journal of Photochemistry and Photobiology B:Biology,2011,105(1):40-50
    [39]Zheng H,Zhang X,Ma W,Song J,Rahman S U,Wang J,Zhang Y.Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei[J].Environmental and Experimental Botany,2017,138:21-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700