用户名: 密码: 验证码:
表面流人工湿地和复合型生态浮床处理污水厂尾水的脱氮性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ANALYSIS ON NITROGEN REMOVAL PERFORMANCE IN TREATMENT OF WASTEWATER TREATMENT PLANT EFFLUENT WITH SURFACE FLOW CONSTRUCTED WETLAND AND INTEGRATED ECOLOGICAL FLOATING-BED
  • 作者:张晓一 ; 陈盛 ; 查丽娜 ; 方妍 ; 方思远 ; 何圣兵
  • 英文作者:ZHANG Xiao-yi;CHEN Sheng;ZHA Li-na;FANG Yan;FANG Si-yuan;HE Sheng-bing;School of Environmental Science and Engineering,Shanghai Jiao Tong University;
  • 关键词:表面流人工湿地 ; 复合型生态浮床 ; 脱氮 ; 高通量测序 ; 黄菖蒲
  • 英文关键词:surface flow constructed wetland;;integrated ecological floating-bed;;nitrogen removal;;high-throughput sequencing;;Iris pseudacorus L
  • 中文刊名:环境工程
  • 英文刊名:Environmental Engineering
  • 机构:上海交通大学环境科学与工程学院;
  • 出版日期:2019-06-15
  • 出版单位:环境工程
  • 年:2019
  • 期:06
  • 基金:国家科技重大专项基金(2017ZX07205003-03);; 国家重点研发计划(2017YFC0506003);; 国家自然科学基金(51678356)
  • 语种:中文;
  • 页:49-54
  • 页数:6
  • CN:11-2097/X
  • ISSN:1000-8942
  • 分类号:X703
摘要
采用菖蒲型表面流人工湿地和复合型生态浮床净化模拟污水厂尾水,以探究在不同季节、不同进水氮形态下两者的脱氮性能差异;并结合高通量测序技术分析微生物组成,以考察两系统内微生物群落结构特征及功能特征。研究结果显示:植物和水温对系统TN的去除具有显著影响,在夏季表面流人工湿地组和复合型生态浮床组的处理效果明显优于春、秋季,在系统水力停留时间为3 d、水温为(34±2)℃的条件下,两者对TN的去除率分别达到(84. 97±3. 90)%和(82. 23±4. 83)%;进水氮形态对系统的运行效果有显著影响,当水温为(25±2)℃时,进水中ρ(NH+4-N)/ρ(NO_3~--N)=1∶1时,系统对TN的去除负荷达到最大,湿地组为1333 mg/(m~2·d),浮床组为923 mg/(m~2·d),适当提高进水中氨氮的比例有利于植物生态系统中总氮的去除。菌群分类结果表明,两种处理系统均具有很高的细菌多样性,相较于浮床组,湿地组的反硝化菌相对丰度更高,表现出更强的脱氮性能。
        Iris surface flow constructed wetland( SFCW) and integrated ecological floating-bed( IEFB) were used to purify the simulated effluent from wastewater treatment plants,aiming to compare nitrogen removal performance differences between these two kinds of ecological technologies in different seasons and under different influent nitrogen forms. High-throughput sequencing technology was also used for analyzing the microbial community composition,in order to investigate the bacterial community structures and functional characteristics of the two systems. Results showed that: plant and water temperature had significant influence on TN removal: both SFCW and IEFB had better treatment performance in summer than that in spring and autumn,when HRT was 3 days and water temperature was( 34±2) ℃,the removal rate of TN reached( 84. 97±3. 90) % and( 82. 23± 4. 83) % in SFCW and FTW,respectively; influent nitrogen forms also greatly affected two systems,treatment performance: under the influent conditions of water temperature of( 25±2) ℃,ρ( NH_4~+-N) to ρ( NO_3~--N) = 1,the removal capability of TN in the system reached the maximum value,respectively,1333 mg/( m~2·d) in SFCW system and 923 mg/( m~2·d) in IEFB system,indicating that the appropriate increase in proportion of NH_4~+-N in the influent was favorable to TN removal in plant ecosystem. Taxonomic analysis showed that each treatment system had very high bacterial diversity,and compared with IEFB,SFCW had higher relative abundance of denitrifying bacteria and showed a stronger nitrogen removal performance.
引文
[1]尉中伟,王晓昌,郑于聪,等.水平潜流人工湿地脱氮功效中植物的作用[J].环境工程学报,2015,9(2):595-602.
    [2] Headley T R,Tanner C C. Constructed wetlands with floating emergent macrophytes:an innovative stormwater treatment technology[J]. Critical Reviews in Environmental Science and Technology,2012,42(21):2261-2310.
    [3]郝明旭,霍莉莉,吴珊珊.人工湿地植物水体净化效能研究进展[J].环境工程,2017,35(8):5-10,24.
    [4]褚润,陈年来,王小娟,等.人工湿地挺水植物脱氮效果研究[J].环境污染与防治,2017,39(8):884-889,894.
    [5] Machado A I,Beretta M,Fragoso R,et al. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil[J]. Journal of Environmental Management,2017,187(1):560-570.
    [6]房昀昊,彭剑峰,宋永会,等.高通量测序法表征潜流人工湿地中不同植物根际细菌群落特征[J].环境科学学报,2018,38(3):911-918.
    [7] Gao L,Zhou W L,Huang J C,et al. Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent[J]. Bioresource Technology,2017,234(1/2/3):243-252.
    [8]杨凤娟.不同工艺生态浮床技术对污染水体的净化效果、机制及示范研究[D].广州:暨南大学,2011.
    [9] Huett D O,Morris S G,Smith G,et al. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands[J]. Water Research,2005,39(14):3259-3272.
    [10] Timmermans P, Haute A V. Denitrification with methanol:fundamental study of the growth and denitrification capacity of Hyphomicrobium sp[J]. Water Research,1983,17(10):1249-1255.
    [11] Ijaz A,Shabir G,Khan Q M,et al. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands[J]. Ecological Engineering,2015,84:58-66.
    [12] Bezbaruah A N,Zhang T C. pH,redox,and oxygen microprofiles in rhizosphere of bulrush(Scirpus validus)in a constructed wetland treating municipal wastewater[J]. Biotechnology and Bioengineering,2004,88(1):60-70.
    [13]陈国元,李国新,唐凯.黄菖蒲和狭叶香蒲根系对氮磷的吸收动力学[J].环境工程学报,2013,7(12):4638-4642.
    [14] Nguyen H T T,Le V Q,Hansen A A,et al. High diversity and abundance of putative polyphosphate-accumulating Tetrasphaerarelated bacteria in activated sludge systems[J]. FEMS Microbiology Ecology,2011,76(2):256-267.
    [15] Gao L,Zhou W,Wu S,et al. Nitrogen removal by thiosulfatedriven denitrification and plant uptake in enhanced floating treatment wetland[J]. Science of the Total Environment,2018,621(15):1550-1558.
    [16]李青,成小英.不同填料生物反应器中脱氮微生物群落比较分析[J].安全与环境学报,2017,17(6):2360-2365.
    [17] Zhu W,Wang C,Sun F,et al. Overall bacterial community composition and abundance of nitrifiers and denitrifiers in a typical macrotidal estuary[J]. Marine Pollution Bulletin,2018,126:540-548.
    [18]常玉梅,杨琦,郝春博,等.城市污水厂活性污泥强化自氧反硝化菌研究[J].环境科学,2011,32(4):1210-1216.
    [19]林燕,张焕杰,刘曦,等.固定反硝化菌强化人工湿地处理低污染水研究[J].农业环境科学学报,2016,35(11):2154-2162.
    [20]王丽华,吕铮,郝春博,等.某石油污染场地地下水中降解菌群落结构研究[J].环境科学与技术,2013,36(7):1-8,146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700