翻压紫云英条件下化肥配施生物炭基肥对水稻Cu吸收转运的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of combined chemical and biochar-based fertilizers applied on Cu absorption and transport in rice under Astragalus sinicus conditions
  • 作者:喻成龙 ; 汤建 ; 喻惟 ; 倪国荣 ; 谢志坚 ; 康丽春 ; 荣勤雷 ; 周春火
  • 英文作者:YU Cheng-long;TANG Jian;YU Wei;NI Guo-rong;XIE Zhi-jian;KANG Li-chun;RONG Qin-lei;ZHOU Chun-huo;School of Land Resources and Environment, Jiangxi Agricultural University/Innovative Integration Center of Industry and Education in Resource Utilization of Agricultural Waste,Prevention and Control of Non-point Pollution of Jiangxi Province;Burea of Agriculture and Rural Affairs of the Wanzai County;School of Engineering, Jiangxi Agricultural University;Key Laboratory of Nutrient Management of Farmland and Prevention of Agricultural NPS Pollution;
  • 关键词:水稻 ; 紫云英 ; 转运 ; Cu ; 生物炭基肥
  • 英文关键词:rice;;Astragalus sinicus;;transport;;Cu;;biochar-based fertilizer
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:江西农业大学国土资源与环境学院/江西省农业废弃物资源化利用与面源污染防控产教融合重点创新中心;万载县农业农村局;江西农业大学工学院;南昌市农业农田养分资源管理与农业面源污染防控重点实验室;
  • 出版日期:2019-09-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:09
  • 基金:国家重点研发计划项目(2017YFD0200808);; 江西省教育厅科学技术研究项目(GJJ170300,GJJ170265);; 国家自然科学基金项目(51808269)~~
  • 语种:中文;
  • 页:91-98
  • 页数:8
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X503.231;S511
摘要
针对稻田土壤重金属Cu污染问题,在翻压紫云英条件下,探究化肥与生物炭基肥配施对土壤-水稻系统Cu吸收及转运的影响。采用盆栽试验,设置5个施肥处理:对照(CK,不施肥)、常规施氮(CN)、紫云英+氮肥(CNG)、紫云英+有机肥+氮肥(CNGO)、紫云英+生物炭基肥+氮肥(CNGC)。研究了不同施肥处理对早稻五优156生长和重金属Cu吸收特性的影响。结果表明:与CN相比,CNG在无污染和污染土壤中水稻籽粒产量分别提高47.1%和50.1%;与CNG相比,CNGC在无污染和污染土壤中水稻籽粒产量分别提高4.5%和12.8%。单施化肥条件下水稻植株体中Cu的总吸收量最大,且水稻根部Cu含量最高;在污染土壤中,CNG处理下水稻糙米存在一定的重金属污染风险,而在CNGC处理下糙米中Cu含量低于相关食品卫生标准(≤10.0 mg·kg~(-1))。进一步研究表明,翻压紫云英能提高Cu从根向秸秆的转运能力,而在污染土壤条件下Cu从秸秆向谷壳的转运能力会受到抑制。在污染土壤中CN处理下Cu有效态含量最高,CNGC处理比CN处理土壤Cu有效态含量降低39.4%,比CK处理降低17.6%。研究表明,翻压紫云英条件下化肥配施生物炭基肥可以提高水稻产量,抑制水稻对Cu的吸收和转运,降低水稻籽粒中Cu含量,适宜在重金属Cu污染稻田施用。
        To address Cu pollution in paddy field soils, we studied the effects of a chemical fertilizer combined with a biochar-based fertilizer on Cu absorption and transport in the soil-rice system under ploughed Astragalus sinicus conditions. Pot experiments were conducted with five treatment groups, including control(CK, unfertilized), conventional nitrogen fertilizer(CN), A. sinicus + nitrogen fertilizer(CNG),A. sinicus + organic fertilizer + nitrogen fertilizer(CNGO), and A. sinicus + biochar-based fertilizer + nitrogen fertilizer(CNGC). The effects of different fertilization treatments on the growth of early-season rice, Wuyou 156, were evaluated in uncontaminated and contaminated soil, and the Cu absorption and transportation processes were examined in rice organs. The results showed that, compared with the CN treatment, the grain yield increased by 47.1% and 50.1% in uncontaminated and contaminated soil, respectively, with the CNG treatment.Compared with the CNG treatment, the CNGC treatment only increased the grain yield by 4.5% and 12.8% in uncontaminated and contaminated soil, respectively. Under the application of inorganic fertilizer, Cu concentrations were the highest in rice roots and the total absorbed Cu was also at its maximum. In contaminated soil, there was a risk of heavy metal(Cu)pollution in brown rice for the CNG treatment; however, the Cu content of brown rice for the CNGC treatment was lower than the related food hygiene standard(10.0 mg·kg~(-1)). Further results indicated that the Cu transporting capacity from root to straw was clearly enhanced under the conditions of ploughed A. sinicus, while the Cu transporting capacity from straw to husk was inhibited in Cu-contaminated soil. Moreover, in contaminated soil, the mass fraction of available Cu was at its maximum for the CN treatment. Compared with the CN treatment, the mass fraction of available Cu in soil for the CNGC treatment was reduced by 39.4%. Compared with the CK treatment, the mass fraction of available Cu in soil for the CNGC treatment was reduced by 17.6%. In summary, in the case of ploughed A. sinicus, a fertilization method that uses a biochar-based fertilizer combined with a chemical fertilizer not only increased rice yield but also inhibited rice Cu absorption and transportation processes, thus reducing the Cu content of rice grains. Thus, such a fertilization method could be applied for the improvement and remediation of Cu in contaminated rice soil.
引文
[1]王洋洋,李方方,王笑阳,等.铅锌冶炼厂周边农田土壤重金属污染空间分布特征及风险评估[J].环境科学,2019,40(1):437-444.WANG Yang-yang,LI Fang-fang,WANG Xiao-yang,et al.Spatial distribution and risk assessment of heavy metal contamination in surface farmland soil around a lead and zinc smelter[J].Environmental Science,2019,40(1):437-444.
    [2]徐芹磊,陈炎辉,谢团辉,等.铅锌矿区农田土壤重金属污染现状与评价[J].环境科学与技术,2018,41(2):176-182.XU Qin-lei,CHEN Yan-hui,XIE Tuan-hui,et al.Current situation and assessment of heavy metals pollution in farmland soils around a Pb-Zn mine[J].Environmental Science&Technology,2018,41(2):176-182.
    [3]钱玲,汪丽.优质高产水稻栽培技术相关要点[J].江西农业,2018(20):1.QIAN Ling,WANG Li.Key Points of high quality and high yield rice cultivation technology[J].Jiangxi Agricultural,2018(20):1.
    [4]Wuana R,Okieimen,F E.Heavy metals in contaminated soils:A review of sources,chemistry,risks and best available strategies for remediation[J].ISRN Ecology,2011.doi:10.5402/2011/402647.
    [5]Lin Y C,Lian I B,Kor C T,et al.Association between soil heavy metals and fatty liver disease in men in Taiwan:A cross sectional study[J].BMJ Open,2017,7(1):e014215.
    [6]Liu S Y,Chi Q D,Cheng Y,et al.Importance of matching soil N transformations,crop N form preference,and climate to enhance crop yield and reducing N loss[J].Science of the Total Environment,2019,657:1265-1273.
    [7]Mampholo B M,Maboko M M,Soundy P,et al.Variety-specific responses of lettuce grown in a gravel-film technique closed hydroponic system to N supply on yield,morphology,phytochemicals,mineral content and safety[J].Journal of Integrative Agriculture,2018(11):2447-2457.
    [8]Suriyagoda L D B,Dittert K,Lambers H.Arsenic in rice soils and potential agronomic mitigation strategies to reduce arsenic bioavailability:A review[J].Pedosphere,2018,28(3):363-382.
    [9]王美,李书田,马义兵,等.长期不同施肥措施对土壤和作物重金属累积的影响[J].农业环境科学学报,2014,33(1):63-74.WANG Mei,LI Shu-tian,MA Yi-bing,et al.Effect of long-term fertilization on heavy metal accumulation in soils and crops[J].Journal of Agro-Environment Science,2014,33(1):63-74.
    [10]王美,李书田,马义兵,等.长期不同施肥措施对土壤铜、锌、镉形态及生物有效性的影响[J].农业环境科学学报,2014,33(8):1500-1510.WANG Mei,LI Shu-tian,MA Yi-bing,et al.Influence of different long-term fertilization practices on fractionations and bioavailability of Cu,Zn,and Cd in soils[J].Journal of Agro-Environment Science,2014,33(8):1500-1510.
    [11]王腾飞,谭长银,曹雪莹,等.长期施肥对土壤重金属积累和有效性的影响[J].农业环境科学学报,2017,36(2):257-263.WANG Teng-fei,TAN Chang-yin,CAO Xue-ying,et al.Effects of long-term fertilization on the accumulation and availability of heavy metals in soil[J].Journal of Agro-Environment Science,2017,36(2):257-263.
    [12]张珺穜.种植利用紫云英对南方稻田土壤肥力性状影响的研究[D].北京:中国农业科学院,2011.ZHANG Jun-tong.Effects of incorporation of Milk Vetch(Astragalus sinicus)on fertility characters of paddy soil in south China[D].Beijing:Chinese Academy of Agricultural Sciences,2011.
    [13]吴浩杰,周兴,鲁艳红,等.紫云英翻压对稻田土壤镉有效性及水稻镉积累的影响[J].中国农学通报,2017,33(16):105-111.WU Hao-jie,ZHOU Xing,LU Yan-hong,et al.Effects of Astragalus sinicus on cadmium effectiveness in paddy soil and cadmium accumulation in rice plant[J].Chinese Agricultural Science Bulletin,2017,33(16):105-111.
    [14]丁炳红.紫云英等有机物料还田对稻田氮磷损失及重金属活性的影响[D].杭州:浙江农林大学,2012.DING Bing-hong.The effect of Chinese milk vetch and other organic materials′application on the loss of nitrogen and phosphorus and the activity of heavy metal in paddy soil[D].Hangzhou:Zhejiang A&FUniversity,2012.
    [15]Beesley L,Moreno-Jiménez E,Gomez-Eyles J L,et al.A review of biochars potential role in the remediation,revegetation and restoration of contaminated soils[J].Environmental Pollution,2011,159(12):3269-3282.
    [16]Uchimiya M,Lima I M,Klasson K T,et al.Contaminant immobilization and nutrient release by biochar soil amendment:Roles of natural organic matter[J].Chemosphere,2010,80(8):935-940.
    [17]Uchimiya M,Lima I M,Klasson K T,et al.Immobilization of heavy metal ions(Cu-Ⅱ,Cd-Ⅱ,Ni-Ⅱ,and Pb-Ⅱ)by broiler litter-derived biochars in water and soil[J].Journal of Agricultural and Food Chemistry,2010,58(9):5538-5544.
    [18]Hossain M K,Strezov V,Chan K Y,et al.Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato(Lycopersicon esculentum)[J].Chemosphere,2010,78(9):1167-1171.
    [19]Park J H,Choppala G K,Bolan N S,et al.Biochar reduces the bioavailability and phytotoxicity of heavy metals[J].Plant and Soil,2011,348(1/2):439-451.
    [20]石红蕾,周启星.生物炭对污染物的土壤环境行为影响研究进展[J].生态学杂志,2014,33(2):486-494.SHI Hong-lei,ZHOU Qi-xing.Research progresses in the effect of biochar on soil-environmental behaviors of pollutants[J].Chinese Journal of Ecology,2014,33(2):486-494.
    [21]吕宏虹,宫艳艳,唐景春,等.生物炭及其复合材料的制备与应用研究进展[J].农业环境科学学报,2015,34(8):1429-1440.LüHong-hong,GONG Yan-yan,TANG Jing-chun,et al.Advances in preparation and applications of biochar and its composites[J].Journal of Agro-Environment Science,2015,34(8):1429-1440.
    [22]刘冲.生物炭基肥对水稻土中Cd、Cu、Pb和Zn的钝化效应研究[D].兰州:兰州大学,2016.LIU Chong.Effect of biochar based fertilizer on remediation of Cd,Cu,Pb and Zn in paddy soils[D].Lanzhou:Lanzhou University,2016.
    [23]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2007.BAO Shi-dan.Soil agriculturalization analysis[M].Beijing:China Ag-389ricultural Press,2007.
    [24]Xu D C,Zhou P,Zhan J,et al.Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area,China[J].Ecotoxicology and Environmental Safety,2013,90(2):103-111.
    [25]席志楠,李增波,王聪颖,等.磁性生物质炭对水体中芘的去除效果研究[J].农业环境科学学报,2017,36(1):176-182.XI Zhi-nan,LI Zeng-bo,WANG Cong-ying,et al.The removal effect of magnetic biochar on pyrene in aqueous phase[J].Journal of AgroEnvironment Science,2017,36(1):176-182.
    [26]马荣辉.铜在黑土-作物系统中的迁移转化及其钝化机理研究[D].杭州:浙江大学,2011.MA Rong-hui.Transfer and transformation of Cu in black soil-crop system and in-situ immobilization mechanism[D].Hangzhou:Zhejiang University,2011.
    [27]安增莉,方青松,侯艳伟.生物炭输入对土壤污染物迁移行为的影响[J].环境科学导刊,2011,30(3):7-10.AN Zeng-li,FANG Qing-song,HOU Yan-wei.Effects on transfer behavior of soil pollutants from inputs of biochar[J].Environmental Science Survey,2011,30(3):7-10.
    [28]Beesley L,Moreno-Jiménez E,Gomez-Eyles J L.Effects of biochar and greenwaste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J].Environmental Pollution,2010,158(6):2282-2287.
    [29]Burkhead J L,Reynolds K A G,Abdel-Ghany S E,et al.Copper homeostasis[J].New Phytologist,2009,182(4):799-816.
    [30]Liao M,Chen C L,Huang C Y.Effects of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area[J].Environmental Sciences,2005,17(5):832-837.
    [31]Irtelli B,Petrucci W A,Navari-Izzo F.Nicotianamine and histidine/proline are,respectively,the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess[J].Experimental Botany,2009,60(1):269-277.
    [32]陈立伟.土壤调理剂与外源铁对稻田系统中Cd的迁移转运效果研究[D].长沙:中南林业科技大学,2018.CHEN Li-wei.Effects of combined amendment and exogenous iron on transport and accumulation of Cd and in soil-rice system[D].Changsha:Central South University of Forestry and Technology,2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700