用户名: 密码: 验证码:
西北太平洋台风同心眼墙影响因子的初步分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary analysis on influencing factors of secondary eyewall formation over Northwest Pacific
  • 作者:管靓 ; 张宇昕 ; 葛旭阳 ; 姜有山
  • 英文作者:GUAN Liang;ZHANG Yuxin;GE Xuyang;JIANG Youshan;Shanghai Marine Meteorological Center;Key Laboratory of Meteorological Disaster,Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Joint International Research Laboratory of Climate and Environment Change (ILCEC),Nanjing University of Information Science & Technology;Zhenjiang Meteorological Bureau;Nanjing Meteorological Observatory;
  • 关键词:同心眼墙 ; 热带气旋 ; 初始结构 ; 环境场要素
  • 英文关键词:secondary eyewall;;tropical cyclone;;initial structure;;environmental factor
  • 中文刊名:大气科学学报
  • 英文刊名:Transactions of Atmospheric Sciences
  • 机构:上海海洋中心气象台;南京信息工程大学气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心/气候与环境变化国际合作联合实验室;镇江市气象局;南京市气象台;
  • 出版日期:2019-07-28
  • 出版单位:大气科学学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金资助项目(41575056);; 国家重点基础研究发展计划(973计划)项目(2015CB452803);; 江苏省高校自然科学研究重点项目(14KJA170005)
  • 语种:中文;
  • 页:14-23
  • 页数:10
  • CN:32-1803/P
  • ISSN:1674-7097
  • 分类号:P444
摘要
利用美国威斯康星大学气象卫星研究合作院提供的集成微波图像资料和联合台风预警中心的最佳路径资料,普查2005—2014年西北太平洋地区具有同心眼墙结构的35个强台风个例。对比分析了有、无同心眼墙及同心眼墙生成快、慢的样本的环境场和自身初始结构差异。结果表明:环境场要素对同心眼墙形成与否具有重要调制作用,环境场相对湿度越大,海温越高,同心眼墙越易生成;而同心眼墙的形成速率与自身结构存在密切关系,初始涡旋尺度越大,同心眼墙生成越快,外眼墙位置距离台风中心越远,眼墙替换时间越长,眼墙替换前后强度变化越明显。
        Based on the M orphed Integrated M icrow ave Imagery data from Cooperative Institute for M eteorological Satellite Studies of University of Wisconsin and the best track data from Joint Typhoon Warning Center,the tropical cyclones( TCs) w ith secondary eyew all over the Northw est Pacific are examined. During 2005—2014,35 TCs w ith secondary eyew all are identified.The composited studies are performed to reveal the differences in environmental fields and initial structures betw een TCs w ith and w ithout secondary eyew all( betw een fast and slow samples of secondary eyew all formation). Results show that both the environmental fields and initial structures can modulate the secondary eyew all formation.Specifically,the larger relative humidity of the environment field and the higher sea surface temperature,the easier the secondary eyew all w ill be formed. Furthermore,the formation rate of secondary eyew all is closely related to its ow n structure.A larger scale initial vortex leads to a faster secondary eyew all formation,father location of outer eyew all from typhoon center,longer duration of eyew all,and more dramatic intensity change before and after eyew all replacement.
引文
Black M L,Willoughby H E,1992.The concentric eyewall cycle of hurricane gilbert[J].Mon Wea Rev,120(6):947-957.
    蔡菁,吴立广,赖巧珍,等,2017.台风“苏拉”登陆福建后降水的非对称成因分析[J].大气科学学报,40(6):814-822.Cai J,Wu L G,Lai Q Z,et al.,2017.Analysis of the precipitation asymmetries of typhoon saola after its landfall on Fujian Province[J].Trans Atmos Sci,40(6):814-822.(in Chinese).
    Chan K T F,Chan J C L,2014.Impacts of initial vortex size and planetary vorticity on tropical cyclone size[J].Quart J Roy Meteor Soc,140(684):2235-2248.
    陈德花,张玲,张伟,等,2018.“莫兰蒂”台风致灾大风的结构特征及成因[J].大气科学学报,41(5):692-701.Chen D H,Zhang L,Zhang W,et al.,2018.Structure characteristics and cause analysis of catastrophic wind caused by super typhoon Meranti[J].Trans Atmos Sci,41(5):692-701.(in Chinese).
    陈光华,裘国庆,2005.热带气旋强度与结构研究新进展[J].气象科技,33(1):1-6.Chen G H,Qiu G Q,2005.PAGESS progress in researches on tropical cyclone intensity and structure[J].Meteorological Science and Technology,33(1):1-6.(in Chinese).
    陈善敏,1986.同心双眼台风结构和强度的初步分析[J].大气科学,10(2):183-188.Chen S M,1986.Preliminary analysis of structure and intensity of concentric double-eye typhoons[J].Chin J Atmos Sci,10(2):183-188.(in Chinese).
    陈小宇,吴立广,李煜斌,2019.大涡技术对模拟台风眼墙替换过程的影响[J].大气科学学报,42(2):161-173.Chen X Y,Wu L G,Li Y B,2019.The influences of large-eddy simulation on typhoon eyewall replacement[J].Trans Atmos Sci,42(2):161-173.(in Chinese).
    Ge X Y,2015.Impacts of environmental humidity on concentric eyewall structure[J].Atmos Sci Lett,16(3):273-278.
    Ge X Y,Li T M,Peng S T,2013.Tropical cyclone genesis efficiency:mid-level versus bottom vortex[J].J Trop Meteor,19(3):197-213.
    Hawkins J D,Helveston M,Lee T F,et al.,2006.Tropical cyclone multiple eyewall configurations[C]//27th conference on hurricanes and tropical meteorology.Monterey,CA:Amer Meteror Soc.
    Hill K A,Lackmann G M,2009.Influence of environmental humidity on tropical cyclone size[J].Mon Wea Rev,137(10):3294-3315.
    Houze R A,Chen S S,Smull B F,et al.,2007.Hurricane intensity and eyewall replacement[J].Science,315(5816):1235-1239.
    黄荣成,雷小途,2010.环境场对近海热带气旋突然增强与突然减弱影响的对比分析[J].热带气象学报,26(2):129-137.Huang R C,Lei X T,2010.Comparative analysis of the influence of environment field on rapid intensifying and weakening of tropical cyclones over offshore waters of China[J].J Trop Meteor,26(2):129-137.(in Chinese).
    Huang Y H,Montgomery M T,Wu C C,2012.Concentric eyewall formation in typhoon sinlaku (2008).part Ⅱ:axisymmetric dynamical processes[J].J Atmos Sci,69(2):662-674.
    Kaplan J,DeMaria M,2003.Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic Basin[J].Wea Forecasting,18(6):1093-1108.
    Kossin J P,Sitkowski M,2012.Predicting hurricane intensity and structure changes associated with eyewall replacement cycles[J].Wea Forecasting,27(2):484-488.
    Kuo H C,Lin L Y,Chang C P,et al.,2004.The formation of concentric vorticity structures in typhoons[J].J Atmos Sci,61(22):2722-2734.
    Kuo H C,Schubert W H,Tsai C L,et al.,2008.Vortex interactions and barotropic aspects of concentric eyewall formation[J].Mon Wea Rev,136(12):5183-5198.
    Kuo H C,Chang C P,Yang Y T,et al.,2009.Western North Pacific typhoons with concentric eyewalls[J].Mon Wea Rev,137(11):3758-3770.
    雷小途,陈联寿,2001.大尺度环境场对热带气旋影响的动力分析[J].气象学报,59(4):429-439.Lei X T,Chen L S,2001.Dynamical studies on the effect of large-scale environmental flow on tropical cyclones[J].Acta Meteorological Sinica,59(4):429-439.(in Chinese).
    李英,钱传海,陈联寿,2009.Sepat台风(0709)登陆过程中眼放大现象研究[J].气象学报,67(5):799-810.Li Y,Qian C H,Chen L S,2009.A study on the eyewall expansion of Typhoon Sepat(2009) during its landfall process[J].Acta Meteorological Sinica,67(5):799-810.(in Chinese).
    Montgomery M T,Kallenbach R J,1997.A theory for vortex rossby-waves and its application to spiral bands and intensity changes in hurricanes[J].Quart J Roy Meteor Soc,123(538):435-465.
    Nong S Y,Emanuel K,2003.A numerical study of the genesis of concentric eyewalls in hurricanes[J].Quart J Roy Meteor Soc,129(595):3323-3338.
    Qiu X,Tan Z M,Xiao Q N,2010.The roles of vortex rossby waves in hurricane secondary eyewall formation[J].Mon Wea Rev,138(6):2092-2109.
    Rozoff C M,Nolan D S,Kossin J P,et al.,2012.The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation[J].J Atmos Sci,69(9):2621-2643.
    Terwey W D,Montgomery M T,2008.Secondary eyewall formation in two idealized,full-physics modeled hurricanes[J].J Geophys Res,113(D12):D12112.
    Wang H,Wu C C,Wang Y Q,2016.Secondary eyewall formation in an idealized tropical cyclone simulation:balanced and unbalanced dynamics[J].J Atmos Sci,73(10):3911-3930.
    王晓峰,许晓林,杨续超,等,2017.数值模式对强台风“菲特”登陆期间预报能力评述[J].大气科学学报,40(5):609-618.Wang X F,Xu X L,Yang X C,et al.,2017.The NWP models’ evaluation of landfall processes of the strong typhoon Fitow[J].Trans Atmos Sci,40(5):609-618.(in Chinese).
    Willoughby H E,Clos J A,Shoreibah M G,1982.Concentric eye walls,secondary wind maxima,and the evolution of the hurricane vortex[J].J Atmos Sci,39(2):395-411.
    Willoughby H E,Jin H L,Lord S J,et al.,1984.Hurricane structure and evolution as simulated by an axisymmetric,nonhydrostatic numerical model[J].J Atmos Sci,41(7):1169-1186.
    Wu C C,Huang Y H,Guo-Yuan L E,2012.Concentric eyewall formation in typhoon sinlaku (2008).part I:assimilation of T-PARC data based on the ensemble kalman filter (EnKF)[J].Mon Wea Rev,140(2):506-527.
    吴海英,曾明剑,王卫芳,等,2015.1211号“海葵”台风登陆后引发两段大暴雨过程的对比分析[J].大气科学学报,38(5):670-677.Wu H Y,Zeng M J,Wang W F,et al.,2015.Comparative analysis on two rainstorm processes caused by typhoon Haikui(1211) after landfall[J].Trans Atmos Sci,38(5):670-677.(in Chinese).
    Xu J,Wang Y Q,2010.Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size[J].Mon Wea Rev,138(11):4135-4157.
    Yang Y T,Kuo H C,Hendricks E A,et al.,2013.Structural and intensity changes of concentric eyewall typhoons in the western North Pacific Basin[J].Mon Wea Rev,141(8):2632-2648.
    Yang Y T,Hendricks E A,Kuo H C,et al.,2014.Long-lived concentric eyewalls in typhoon Soulik(2013)[J].Mon Wea Rev,142(9):3365-3371.
    余晖,吴国雄,2001.湿斜压性与热带气旋强度突变[J].气象学报,59(4):440-449.Yu H,Wu G X,2001.Moist baroclinity and abrupt intensity change of tropical cyclone[J].Acta Meteor Sinica,59(4):440-449.(in Chinese).
    Zeng Z H,Wang Y Q,Wu C C,2007.Environmental dynamical control of tropical cyclone intensity:an observational study[J].Mon Wea Rev,135(1):38-59.
    Zhao X H,Chan J C L,2017.Changes in tropical cyclone intensity with translation speed and mixed-layer depth:idealized WRF-ROMS coupled model simulations[J].Quart J Roy Meteor Soc,143(702):152-163.
    郑峰,曾智华,雷小途,等,2016.中国近海突然增强台风统计分析[J].高原气象,35(1):198-210.Zheng F,Zeng Z H,Lei X T,et al.,2016.A statistical study of rapid intensification of typhoons over coastal water of China[J].Plateau Meteor,35(1):198-210.(in Chinese).
    Zhou X Q,Wang B,2011.Mechanism of concentric eyewall replacement cycles and associated intensity change[J].J Atmos Sci,68(5):972-988.
    Zhou X Q,Wang B,2013.Large-scale influences on secondary eyewall size[J].J Geophys Res Atmos,118(19):11088-11097.
    Zhou X Q,Wang B,Ge X Y,et al.,2011.Impact of secondary eyewall heating on tropical cyclone intensity change[J].J Atmos Sci,68(3):450-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700