用户名: 密码: 验证码:
镉砷污染土壤钝化剂配方优化及效果研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimizing the formulation and stabilization effects of an amendment for cadmium and arsenic contaminated soil
  • 作者:熊静 ; 郭丽莉 ; 李书鹏 ; 林启美 ; 陈有鑑
  • 英文作者:XIONG Jing;GUO Li-li;LI Shu-peng;LIN Qi-mei;CHEN You-jian;National Engineering Laboratory for Site Remediation Technologies;College of Resources and Environmental Sciences, China Agricultural University;
  • 关键词: ; ; 生物炭 ; 海泡石 ; 蛭石 ; 最优配比
  • 英文关键词:cadmium;;arsenic;;biochar;;sepiolite;;vermiculite;;optimal formulation
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:污染场地安全修复技术国家工程实验室;中国农业大学资源与环境学院;
  • 出版日期:2019-08-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划项目(2017YFD0800900)~~
  • 语种:中文;
  • 页:252-261
  • 页数:10
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53
摘要
为筛选出适宜镉砷污染土壤的复合钝化剂,采用D-最优混料设计方法,研究铁改性生物炭、酸改性海泡石和酸改性蛭石钝化土壤Cd和As的最优复配配方。结果表明:经FeCl3改性后的生物炭对As的吸附能力增加,对Cd的吸附能力降低;经酸改性后的海泡石和蛭石对Cd的吸附能力不变,对As的吸附能力增强。铁改性生物炭、酸改性海泡石和酸改性蛭石复配能有效降低土壤有效态Cd和As含量,活性态Cd主要向残渣态转化,活性态As主要向有机结合态和残渣态转化,Cd和As生物有效性降低。采用Design Expert统计软件分析数据,通过建立回归方程及多目标优化分析,获得复配钝化剂的配比为铁改性生物炭26.97%、酸改性海泡石23.49%和酸改性蛭石49.54%,经验证实验,施用优化配方后的土壤有效态Cd和As含量分别为0.97 mg·kg-1和0.26 mg·kg-1,与预测值接近。研究表明,铁改性生物炭、酸改性海泡石和酸改性蛭石复配能有效降低土壤Cd和As的生物有效性。
        To select suitable amendments for soil polluted with cadmium and arsenic, the D-optimal mixture design method was used to find an optimum formula of modified biochar, sepiolite, and vermiculite for cadmium and arsenic stabilization. Compared to biochar, the capacity of FeCl3-modified biochar to absorb As increased but decreased for Cd. Compared to sepiolite or vermiculite, the capacity of acidmodified sepiolite or vermiculite to absorb As increased but remained unchanged for Cd. FeCl3-modified biochar combined with acid-modified sepiolite and acid-modified vermiculite could effectively reduce the content of Cd and As available in soil. The available Cd was transformed into a residual form whereas the available As was transformed into organic matter and residual forms. The statistical software Design Expert was used to analyze the data and a regression model was established for the available Cd and As parameters. Based on a complete consideration of these parameters, an optimal amendment formulation was found consisting of 26.97% FeCl3-modified biochar, 23.49% acid-modified sepiolite, and 49.54% acid-modified vermiculite. When added amendments with the optimized formulation, the actual available Cd and As of soil were 0.97 mg·kg-1 and 0.26 mg·kg-1, respectively, which closely approximated their predicted counterparts. The results indicated that the combination of FeCl3-modified biochar and acid-modified sepiolite and vermiculite could effectively reduce the bioavailability of Cd and As in soil.
引文
[1] Hu W Y, Zhang Y X, Huang B, et al. Soil environmental quality in greenhouse vegetable production systems in eastern China:current status and management strategies[J]. Chemosphere, 2017, 170:183-195.
    [2]中华人民共和国生态环境部和中华人民共和国自然资源部.全国土壤污染状况调查公报[R].北京:中华人民共和国生态环境部和中华人民共和国自然资源部, 2014.Ministry of Ecology and Environment of PRC and Ministry of Natural Resources of PRC. The results of a national soil survey[R]. Beijing:Ministry of Ecology and Environment of PRC and Ministry of Natural Resources of PRC, 2014.
    [3]曾希柏,徐建明,黄巧云,等.中国农田重金属问题的若干思考[J].土壤学报, 2013, 50(1):186-194.ZENG Xi-bai, XU Jian-ming, HUANG Qiao-yun, et al. Some deliberations on the issues of heavy metals in farmlands of China[J]. Acta Pedologica Sinica, 2013, 50(1):186-194.
    [4]陈怀满.环境土壤学[M].二版.北京:科学出版社, 2010:212-216.CHEN Huai-man. Environmental soil science[M]. Beijing:Science Press, 2010:212-216.
    [5] Bolan N S, Adriano D C, Mani A P, et al. Immobilization and phytoavailability of cadmium in variable charge soils:Ⅱ. Effect of lime compost[J]. Plant Soil, 2003, 251(2):187-198.
    [6]史力争,陈惠康,吴川,等.赤泥及其复合钝化剂对土壤铅、镉和砷的稳定效应[J].中国科学院大学学报, 2018, 35(5):617-626.SHI Li-zheng, CHEN Hui-kang, WU Chuan, et al. Effects of red mud and the combinations on lead, cadmium, and arsenic availability in contaminated soil[J]. Journal of University of Chinese Academy of Sciences,2018, 35(5):617-626.
    [7]吴宝麟.铅镉砷复合污染土壤钝化修复研究[D].长沙:中南大学,(2W0PU1b 4).B aaon d-lianr.s eTnhice(imAsm)o biinli zcaotinotan mrienmateeddi atsiooilns[oDf].c aCdhmainugmsh(aC:dC),e nlteraadl South University, 2014.
    [8]徐珺,曾敏,王光军,等. 2种组配改良剂修复镉砷复合污染稻田土壤的研究[J].环境科学学报, 2018, 38(5):2008-2013.XU Jun, ZENG Min, WANG Guang-jun, et al. Remediation of paddy soil complexly polluted with cadmium and arsenic using 2 combined amendments[J]. Acta Scientiae Circumstantiae, 2018, 38(5):2008-2013.
    [9]柳晓,韩跃新,何发钰,等.赤泥的危害及其综合利用研究现状[J].金属矿山, 2018, 509(11):7-12.LIU Xiao, HAN Yue-xin, HE Fa-yu, et al. Research status on hazards and comprehensive utilization of red mud[J]. Metal Mine, 2018, 509(11):7-12.
    [10]宁东峰.土壤重金属原位钝化修复技术研究进展[J].中国农学通报, 2016, 32(23):72-80.NING Dong-feng. A review of in situ passivation repairing technology of heavy metals in soil[J]. Chinese Agricultural Science Bulletin, 2016,32(23):72-80.
    [11] Lehmann J D, Joseph S. Biochar for environmental management:Science, technology and implementation[M]. United Kingdom:Earthscan, 2008.
    [12] Sun Y B, Sun G H, Xu Y M, et al. Assessment of sepiolite for immobilization of cadmium-contaminated soils[J]. Geoderma, 2013, 193/194:149-155.
    [13] Malandrino M, Abollino O, Giacomino A, et al. Adsorption of heavy metals on vermiculite:Influence of pH and organic ligands[J]. Journal of Colloid and Interface Science, 2006, 299:537-546.
    [14]董双快,徐万里,吴福飞,等.铁改性生物炭促进土壤砷形态转化抑制植物砷吸收[J].农业工程学报, 2016, 32(15):204-212.DONG Shuang-kuai, XU Wan-li, WU Fu-fei, et al. Fe-modified biochar improving transformation of arsenic form in soil and inhibiting its absorption of plant[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15):204-212.
    [15]陈昭平,罗来涛,李永绣,等.酸处理对海泡石表面及结构性质的影响[J].南昌大学学报(理科版),2000, 24(1):68-72.CHEN Zhao-ping, LUO Lai-tao, LI Yong-xiu, et al. Effect of HCl treatment on the surface characteristic of sepiolite[J]. Journal of Nanchang University(Natural Science), 2000, 24(1):68-72.
    [16]王丽娟.蛭石的改性与应用研究进展[J].中国粉体技术, 2015, 21(6):96-100.WANG Li-juan. Advances in research and application on modification of vermiculite[J]. China Powder Science and Technology, 2015, 21(6):96-100.
    [17]符方方,黄劲恒,林华庆,等. D-最优混料设计优化格列吡嗪pH非依赖型缓释片的处方[J].广东医科大学学报, 2018, 34(5):547-553.FU Fang-fang, HUANG Jin-heng, LIN Hua-qing, et al. Optimization the formulation of pH-independent sustained release tablets of glipizide using D-optimal mixture design[J]. Journal of Guangdong Pharmaceutical University, 2018, 34(5):547-553.
    [18]罗丽,宋礼,崔广智,等.混料设计在中老年牦牛乳蛋白粉配方研究中的应用[J].食品研究与开发, 2018, 39(5):80-84.LUO Li, SONG Li, CUI Guang-zhi, et al. Application of mixture design in confirming the formula of yak milk protein powder for middleaged and old people[J]. Food Research and Development, 2018, 39(5):80-84.
    [19] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51:844-851.
    [20]李月芬,王冬艳,汤洁,等.吉林西部土壤砷的形态分布及其与土壤性质的关系研究[J].农业环境科学学报, 2012, 31(3):516-522.LI Yue-fen, WANG Dong-yan, TANG Jie, et al. Speciation of soil arsenic and its correlation with soil properties in western Jilin Province,China[J]. Journal of Agro-Environment Science, 2012, 31(3):516-522.
    [21]孙晓艳,罗立强.重金属生物有效性在矿山环境评价中应用研究进展[J].矿产保护与利用, 2019, 39(1):100-108.SUN Xiao-yan, LUO Li-qiang. Research progress on the application bioavailability of heavy metals to evaluate ecological risk in mining area[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1):100-108.
    [22] Fernández-Ondo O E, Bacchetta G, Lallena A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of Geochemical Exploration, 2017, 172:133-141.
    [23] Kumpiene J, Bert V, Dimitriou I, et al. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils(phyto)managed by gentle remediation options(GRO)[J].Science of the Total Environment, 2014, 496:510-522.
    [24] Lee S H, Kin E Y, Hyun P, et al. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products[J].Geoderma, 2011,161:1-7.
    [25]吴烈善,曾东梅,莫小荣,等.不同钝化剂对重金属污染土壤稳定化效应的研究[J].环境科学, 2015, 36(1):309-313.WU Lie-shan, ZENG Dong-mei, MO Xiao-rong, et al. Immobilization impact of different fixatives on heavy metals contaminated soil[J].Environmental Science, 2015, 36(1):309-313.
    [26] Maria I S G, Cheryl M, Ander Q A, et al. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil[J]. Chemosphere, 2018, 201:278-285.
    [27]肖然.生物炭的制备及其对养分保留和重金属钝化的潜力研究[D].杨凌:西北农林科技大学, 2017.XIAO Ran. Biochar production for nutrient recycling and heavy metal polluted soil remediation[D]. Yangling:Northwest A&F University,2017:6-8.
    [28] Tabak H H, Lens P, Hullebusch E D, et al. Developments in bioremediation of soils and sediments polluted with metals and radionuclides:1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport[J].Reviews in Environmental Science and Biotechnology, 2005, 4(3):115-156.
    [29] Carlson L, Bigham J M, Schwertmann U, et al. Scavenging of As form acid mine drainage by schwertmannite and ferrihydrite:A comparison with synthetic analogues[J]. Environmental Science Technology, 2002,36:1712-1719.
    [30] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments:A review[J]. Waste Management,2008, 28:215-225.
    [31]王浩,潘利祥,张翔宇,等.复合稳定剂对砷污染土壤的稳定研究[J].环境科学, 2013, 34(9):3587-3594.WANG Hao, PAN Li-xiang, ZHANG Xiang-yu, et al. Study on composite stabilization of arsenic(As)contaminated soil[J]. Environmental Science, 2013, 34(9):3587-3594.
    [32]罗文文,徐应明,王农,等.贝壳粉对Cd(Ⅱ)的吸附性能研究[J].农业环境科学学报, 2017, 36(11):2240-2247.LUO Wen-wen, XU Ying-ming, WANG Nong, et al. Adsorption performance of cadmium onto shell powder[J]. Journal of Agro-Environment Science, 2017, 36(11):2240-2247.
    [33] Sun Y B, Xu Y M, Xu Y, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208:739-746.
    [34] Sun Y B, Sun G H, Xu Y M, et al. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium contaminated soils[J]. Journal of Environmental Management, 2016, 166:204-210.
    [35]农毅清,许梦寒,刘源焕,等. D-最优混料设计优化保健食品蓝参降脂咀嚼片处方工艺[J].食品与生物技术学报, 2015, 34(3):316-323.NONG Yi-qing, XU Meng-han, LIU Yuan-huan, et al. Formulation optimizing of health food Lanshen lipid-lowering chewing tablet by D-optimal mixture design[J]. Journal of Food Science and Biotechnology, 2015, 34(3):316-323.
    [36]周剑忠,黄开红,董明盛,等.混料设计在藏灵菇奶纯培养发酵剂配方设计中的应用[J].中国农业科学, 2008, 41(3):816-822.ZHOU Jian-zhong, HUANG Kai-hong, DONG Ming-sheng, et al. Application of mixture design to design of formulation of pure cultures in Tibetan kefir[J]. Scientia Agricultura Sinica, 2008, 41(3):816-822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700