用户名: 密码: 验证码:
亚高山湿地摇蚊亚化石记录的近两百年来环境演化——以重庆葱坪湿地为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Subfossil chironomid-inferred environmental changes in subalpine wetland over the past 200 years——A case of Congping Wetland in Chongqing
  • 作者:郑婷 ; 曹艳敏 ; 彭佳 ; 陈旭
  • 英文作者:ZHENG Ting;CAO Yanmin;PENG Jia;CHEN Xu;Department of Geography,School of Earth Sciences,China University of Geosciences ( Wuhan);College of Resources and Environmental Science,South-Central University for Nationalities;
  • 关键词:摇蚊亚化石 ; 元素 ; 大气沉降 ; 亚高山湿地 ; 环境演化 ; 葱坪湿地
  • 英文关键词:Subfossil chironomid;;elements;;atmospheric deposition;;subalpine wetland;;environmental change;;Congping Wetland
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国地质大学(武汉)地球科学学院地理系;中南民族大学资源与环境学院;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(41877428,41572343,41402307);; 湖北省自然科学基金项目(2017CFB532)联合资助
  • 语种:中文;
  • 页:294-302
  • 页数:9
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:Q915.2;P532
摘要
偏远的亚高山湿地受人为活动直接干扰较小,是追踪气候变化和大气沉降双重影响下湿地生态系统演化的理想研究地.本研究以位于巫山的葱坪湿地为研究对象,基于一根50 cm沉积岩芯的210Pb和137Cs测年、摇蚊亚化石和元素序列,探讨该湿地近200年来环境演化历史.结果表明,摇蚊种群由1910年之前的Chironomus anthracinus-type、Limnophyes sp.、Cladotanytarsus mancus-type 1变为1910-1925年的C. mancus-type 1、C. anthracinus-type、Procladius sp.和Endochironomus impar-type的优势组合,这些优势种均指示浅水环境.此后,耐营养种E. impar-type、Polypedilum nubeculosum-type和C. anthracinus-type逐渐成为优势种.冗余分析表明,总磷、总碳和钙是解释摇蚊组合变化的显著环境因子. 20世纪30年代以前摇蚊种群可能与进入湿地的径流量小、水位较低相关,而20世纪中叶以来摇蚊组合变化指示大气沉降增长背景下湿地营养富集过程.在大气沉降和气候变化的双重影响下,耐营养属种增加和生物多样性降低表明葱坪湿地生态环境正发生退化.
        Remote subalpine wetlands are subjected to limited human direct disturbances,and hence they are ideal sites for tracking the combined effects of climate change and atmospheric deposition on wetland ecosystem evolution. This study investigated environmental changes in Congping Wetland located in the Wushan Mountains during the past 200 years,based on the210 Pb and137 Cs chronology,subfossil chironomids and element contents of a 50 cm long sediment core collected from the wetland. The results revealed that chironomid communities were dominated by Chironomus anthracinus-type,Limnophyes sp. and Cladotanytarsus mancustype 1 before 1910,and then they were characterized by the co-dominance of C. mancus-type 1,C. anthracinus-type,Procladius sp. and Endochironomus impar-type between 1910 and 1925. All the dominant species mentioned above are adapted to shallow water environment. Thereafter,nutrient-tolerant species,including E. impar-type,Polypedilum nubeculosum-type and C. anthracinustype became the dominant taxa. Redundancy analyses indicated that total phosphorus,total carbon and Ca were significant environmental variables explaining variance in chironomid data. Chironomid communities before the 1930 s might be linked to low runoff input and shallow water table in this wetland,while changes in the communities after the mid-20 th century mirrored nutrient enrichment due to intensified atmospheric deposition. Under the combined effect of atmospheric deposition and climate change,the increase of nutrient-tolerant species and biodiversity loss indicate that Congping Wetland is facing with ecological environment degradation.
引文
[1] Huang XY,Zhang ZQ,Wang HM et al. Overview on critical zone observatory at Dajiuhu Peatland,Shennongjia. Earth Science,2017,42(6):1026-1038. DOI:10.3799/dqkx.2017.081.[黄咸雨,张志麒,王红梅等.神农架大九湖泥炭湿地关键带监测进展.地球科学,2017,42(6):1026-1038.]
    [2] Catalan J,Pla-Rabés S,Wolfe AP et al. Global change revealed by palaeolimnological records from remote lakes:a review. Journal of Paleolimnology,2013,49(3):513-535. DOI:10.1007/s10933-013-9681-2.
    [3] Kubovˇcík V,Bituík P. Subfossil chironomids(Diptera,Chironomidae)in three Tatra Mountain lakes(Slovakia)on an acidification gradient. Biologia,2006,61(18):S213-S220. DOI:10.2478/s11756-006-0133-6.
    [4] Wolfe AP,Baron JS,Cornett RJ. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range(USA). Journal of Paleolimnology,2001,25(1):1-7.
    [5] Hu Z,Anderson NJ,Yang X et al. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Global Change Biology,2014,20(5):1614-1628. DOI:10.1111/gcb.12435.
    [6] Brodin Y,Gransberg M. Responses of insects,especially Chironomidae(Diptera),and mites to 130 years of acidification in a Scottish lake. Hydrobiologia,1993,250(3):201-212.
    [7] Ilyashuk B,Ilyashuk E. Response of alpine chironomid communities(Lake Chuna,Kola Peninsula,northwestern Russia)to atmospheric contamination. Journal of Paleolimnology,2001,25(4):467-475.
    [8] Zhai SJ,Yang LY,Hu WP. Observations of atmospheric nitrogen and phosphorus deposition during the period of algal bloom formation in Northern Lake Taihu,China. Environmental Management,2009,44(3):542-551. DOI:10. 1007/s00267-009-9334-4.
    [9] Zhang XF,Li CH. Wet deposition of atmospheric nitrogen and its eutrophication effect on Xihu Lake,Huizhou City. Chinese Journal of Eco-Agriculture,2008,16(1):16-19.[张修峰,李传红.大气氮湿沉降及其对惠州西湖水体富营养化的影响.中国生态农业学报,2008,16(1):16-19.]
    [10] Xiang RJ. Characteristicsof acid deposition and environmental effects of typical acid rain areas in southern China[Dissertation]. Changsha:South-Central University,2012.[向仁军.中国南方典型酸雨区酸沉降特性及其环境效应研究[学位论文].长沙:中南大学,2012.]
    [11] Brodersen KP,Anderson NJ. Distribution of chironomids(Diptera)in low arctic West Greenland lakes:trophic conditions,temperature and environmental reconstruction. Freshwater Biology,2002,47(6):1137-1157.
    [12] Henrikson L,Olofsson JB,Oscarson HG. The impact of acidification on Chironomidae(Diptera)as indicated by subfossil stratification. Hydrobiologia,1982,86:223-229.
    [13] Nazarova L,Self AE,Brooks SJ et al. Northern Russian chironomid-based modern summer temperature data set and inference models. Global&Planetary Change,2015,134:10-25.
    [14] Zhang E,Chang J,Cao Y et al. A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau,China. Climate of the Past,2017,13(3):185-199. DOI:10.5194/cp-13-185-2017.
    [15] Zhang E,Chang J,Cao Yet al. Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan Plateau. Quaternary Science Reviews,2017,165:1-12.
    [16] Liu M. The historical and influencing mechanism of the change of the fauna of the benthic invertebrate in the Yunnan province in the past 100years[Dissertation]. Kunming:Yunnan Normal University,2014.[刘敏.近百年来滇池底栖无脊椎动物群落的变化历史与影响机制[学位论文].昆明:云南师范大学,2014.]
    [17] Cao YM. Subfossil chironomid assemblages and the related environmental factors in subalpine mires,western Hubei Province. Chinese Journal of Ecology,2016,(5):1268-1276. DOI:10.13292/j.1000-4890.201605.030.[曹艳敏.鄂西亚高山泥炭地摇蚊种群组成及其影响因子.生态学杂志,2016,(5):1268-1276.]
    [18] Brooks SJ,Langdon PG,Heiri O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No.10. London:Quaternary Research Association,2007.
    [19] Quinlan R,Smol JP. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology,2001,26(3):327-342.
    [20] Chongqing Bureau of Statistics ed. Chongqing Statistical Yearbook. Beijing:China Statistics Press,2017.[重庆统计局.重庆统计年鉴.北京:中国统计出版社,2017.]
    [21] Grimm EC. CONISS:A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences,1987,13(1):13-35.
    [22] Bennett KD. Determination of the number of zones in abiostratigraphical sequence. New Phytologist,1996,132(1):155-170.
    [23] Braak TC,milauer P. CANOCO reference manual and CanoDraw for Windows user's guide:software for canonical community ordination(version 4.5)Section on Permutation Methods. Microcomputer Power,Ithaca,New York,2002.
    [24] Appleby PG. Chronostratigraphic techniques in recent sediments. In:Last W,Smol J eds. Tracking environmental change using lake sediments. Netherlands:Springer,2001:171-203.
    [25] Korhola A,Olander H,Blom T. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology,2000,24:43-54.
    [26] Brodin YW. The postglacial history of Lake Flarken,Southern Sweden,interpreted from subfossil insect remains. Internationale Revue der Gesamten Hydrobiologie,1986,71(3):371-432.
    [27] Tang HQ. Biosystematic study on the chironomid larvae in China(Diptera:Chironomidae)[Dissertation]. Tianjin:Nankai University,2006.[唐红渠.中国摇蚊科幼虫生物系统学研究(双翅目:摇蚊科)[学位论文].天津:南开大学,2006.]
    [28] Massaferro J,Brooks SJ. Response of chironomids to Late Quaternary environmental change in the Taitao Peninsula,southern Chile. Journal of Quaternary Science,2002,17:101-111. DOI:10.1002/jqs.671.
    [29] Peng J ed. Sedimentary records of ecological environment change of subalpine wetlands in the middle Yangtze reaches since the 1800s—A case study in the Congping Wetland[Dissertation]. Wuhan:China University of Geosciences,2018.[彭佳.近代以来长江中游亚高山湿地生态环境演化的沉积记录———以葱坪湿地为例[学位论文].武汉:中国地质大学,2018.]
    [30] Wang SW ed. The holocene climate change. Beijing:China Meteorological Press,2011.[王绍武.全新世气候变化.北京:气象出版社,2011.]
    [31] Yan ZP,Xu YS,Yao XH et al eds. Selected statistics of China economic history. Beijing:China Social Sciences Press,2012.[严中平,徐义生,姚贤镐等.中国经济史统计资料选辑.北京:中国社会科学出版社,2012.]
    [32] Clegg BF,Clarke GH,Chipman ML et al. Six millennia of summer temperature variation based on midge analysis of lake sediments from Alaska. Quaternary Science Review,2010,29(23):3308-3316. DOI:10.1016/j.quascirev.2010.08.001.
    [33] Zhang B. Theelaboration about industry move to the inland and its function in the war of resistance against Japan[Dissertation]. Dalian:Dalian University of Technology,2006.[张斌.论抗战时期工业内迁及其作用[学位论文].大连:大连理工大学,2006.]
    [34] Sichuan Bureau of Statistics ed. Sichuan Statistics Yearbook. Beijing:China Statistics Press,2017.[四川省统计局.四川统计年鉴.北京:中国统计出版社,2017.]
    [35] Psenner R,Schmidt R. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature,1992,356(6372):781-783.
    [36] Zhang EL,Cao YM,Langdon P et al. Alternate trajectories in historic trophic change from two lakes in the same catchment,Huayang Basin,middle reach of Yangtze River,China. Journal of Paleolimnology. 2012,48(2):367-381. DOI:10.1007/s10933-012-9608-3.
    [37] Saether OA. Chironomid communities as water quality indicators. Holarctic Ecology,1979,2(2):65-74.
    [38] Cao YM,Zhang EL,Tang HQ et al. Combined effects of nutrients and trace metals on chironomid composition and morphology in a heavily polluted lake in central China since the early 20th century. Hydrobiologia,2016,779(1):147-159.DOI:10.1007/s10750-016-2810-y.
    [39] Chen X,Yang XD,Dong XH et al. Effects of environmental changes on the succession of diatom assemblage during the last 50 years in Lake Chaohu. J Lake Sci,2011,23(5):665-672. DOI:10.18307/2011.0501.[陈旭,羊向东,董旭辉等.近50年来环境变化对巢湖硅藻组合演替的影响.湖泊科学,2011,23(5):665-672.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700