用户名: 密码: 验证码:
工业园区地下水细菌群落结构及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bacterial Community Structure and Its Influence Factors of the Groundwater in an Industry Park
  • 作者:许霞 ; 刘菲 ; 薛银刚 ; 屠博文 ; 周璐璐 ; 江晓栋 ; 施昕澜 ; 薛柯
  • 英文作者:XU Xia;LIU Fei;XUE Yin-gang;TU Bo-wen;ZHOU Lu-lu;JIANG Xiao-dong;SHI Xin-lan;XUE Ke;School of Environmental and Safety Engineering,Changzhou University;Key Laboratory of Environmental Protection of Water Environment Biological Monitoring of Jiangsu Province/Changzhou Environmental Monitoring Center;Changzhou Centers for Disease Control and Prevention;
  • 关键词:工业园区 ; 地下水 ; 细菌群落 ; 高通量测序 ; 淡水种群
  • 英文关键词:industrial park;;groundwater;;bacterial community;;high-throughput sequencing;;freshwater populations
  • 中文刊名:生态与农村环境学报
  • 英文刊名:Journal of Ecology and Rural Environment
  • 机构:常州大学环境与安全工程学院;江苏省环境保护水环境生物监测重点实验室/常州市环境监测中心;常州市疾病预防控制中心;
  • 出版日期:2019-02-25
  • 出版单位:生态与农村环境学报
  • 年:2019
  • 期:02
  • 基金:江苏省第十四批“六大人才高峰”项目(JNHB-118);; 常州市科技局科技支撑社会发展项目(CE20175022);; 国家水体污染控制与治理科技重大专项(2017ZX07202-01);; 江苏省自然科学基金青年基金(BK20150250);; 江苏省预防医学会科研课题(Y2015016)
  • 语种:中文;
  • 页:121-129
  • 页数:9
  • CN:32-1766/X
  • ISSN:1673-4831
  • 分类号:X172;X523
摘要
地下水细菌群落结构和多样性是反映其生态系统环境敏感性的重要指标。为研究工业园区地下水细菌群落结构及多样性,于2016年12月对常州市某工业园区地下水进行采集,采用高通量技术对细菌的16S rRNA基因进行序列测定。高通量测序结果表明工业园区地下水细菌群落呈现出典型的淡水种群特征,主要由变形菌门(Proteobacteria,86. 40%)、拟杆菌门(Bacteroidetes,5. 06%)和厚壁菌门(Firmicutes,3. 04%)等55个细菌门,γ-变形菌纲(Gammaproteobacteria,47. 51%)、β-变形菌纲(Betaproteobacteria,29. 58%)和α-变形菌纲(Alphaproteobacteria,6. 75%)等95个细菌纲以及假单胞菌属(Pseudomonas,16. 38%),Perlucidibaca (9. 17%)和不动杆菌属(Acinetobacter,8. 12%)等564个细菌属组成。经分析,水质情况影响着细菌群落组成和多样性,水质较好的点位细菌群落丰富度和均匀度也较高;冗余分析结果表明氯化物、钙、电导率、铁、氟化物和硫酸盐是能显著解释地下水细菌群落的环境因子。
        The structure and diversity of bacterial community in groundwater are important indicators to reflect the environmental sensitivity of the ecosystem. In order to investigate the bacterial community structure and diversity of the groundwater in an industrial park,the groundwater samples from an industrial park in Changzhou were collected in December2016,and the 16 S rRNA gene of bacteria was sequenced by high-throughput sequencing. The results show that bacterial community structure of the groundwater present a typical characteristics of freshwater populations and could be divided into55 phyla,95 classes and 564 genera. Proteobacteria( 86. 40%),Bacteroidetes( 5. 06%) and Firmicutes( 3. 04%) are the dominant phyla in the studied groundwater. The abundant classes within the phyla Proteobacteria are Gammaproteobacteria( 47. 51%),Betaproteobacteria( 29. 58%) and Alphaproteobacteria( 6. 75%),respectively. At the genus level,Pseudomonas( 16. 38%),Perlucidibaca( 9. 17%) and Acinetobacter( 8. 12%) are predominant. The influence of the physical and chemical indicators on bacterial community show that the water quality affects the composition and diversity of bacterial community,and the better the water quality is,the higher the richness and evenness of bacterial community are.Redundancy analysis results show that chloride,calcium,conductivity,iron,fluoride and sulfate are the environmental factors that can significantly explain the groundwater bacterial community.
引文
[1]孙才志,奚旭,董璐.基于Arc GIS的下辽河平原地下水脆弱性评价及空间结构分析[J].生态学报,2015,35(20):6635-6646.[SUN Cai-zhi,XI Xu,DONG Lu.An Arc GIS-Based Analysis of Groundwater Spatial Structure and Groundwater Vulnerability in the Lower Reaches of the Liaohe River Plain[J].Acta Ecologica Sinica,2015,35(20):6635-6646.]
    [2]CAO G L,ZHENG C M,SCANLON B R,et al.Use of Flow Modeling to Assess Sustainability of Groundwater Resources in the North China Plain[J].Water Resources Research,2015,49(1):159-175.
    [3]JI Y F,DONG C Y,KONG D Y,et al.Heat-Activated Persulfate Oxidation of Atrazine:Implications for Remediation of Groundwater Contaminated by Herbicides[J].Chemical Engineering Journal,2015,263:45-54.
    [4]POSTIGO C,BARCELD.Synthetic Organic Compounds and Their Transformation Products in Groundwater:Occurrence,Fate and Mitigation[J].Science of the Total Environment,2015,503/504:32-47.
    [5]WINTER T C.Recent Advances in Understanding the Interaction of Groundwater and Surface Water[J].Reviews of Geophysics,2015,33(Suppl.1):985-994.
    [6]MAXWELL R M,CONDON L E,KOLLET S J.A High-Resolution Simulation of Groundwater and Surface Water Over Most of the Continental US With the Integrated Hydrologic Model ParFlow v3[J].Geoscientific Model Development,2015,8(3):923-937.
    [7]安新丽,陈廷廷,赵晗,等.基于微生物生物完整性指数的地下水生态系统健康评价:以包钢稀土尾矿库周边地下水生态系统为例[J].环境科学,2016,37(9):3413-3422.[AN Xin-li,CHEN Ting-ting,ZHAO Han,et al.Assessment of Ecosystem Health of Baogang Tailings Groundwater Based on Microbiome Index of Biotic Integrity(M-IBI)[J].Environmental Science,2016,37(9):3413-3422.]
    [8]吕保义,谢建云,郑喻,等.稀土尾矿库周边地下水微生物的群落多样性研究[J].环境工程,2015,33(增刊1):101-104,116.[LBao-yi,XIE Jian-yun,ZHENG Yu,et al.Study on Microbial Biodiverdity in the Groundwater Around Tallings of Rare Earth[J].Environmental Engineering,2015(Suppl.1):101-104,116.]
    [9]LI P,WANG Y H,DAI X Y,et al.Microbial Community in High Arsenic Shallow Groundwater Aquifers in Hetao Basin of Inner Mongolia,China[J].PLoS One,2015,10(5):e0125844.
    [10]郝春博,王广才,董健楠,等.石油污染地下水中细菌多样性研究[J].环境科学,2009,30(8):2464-2472.[HAO Chun-bo,WANG Guang-cai,DONG Jian-nan,et al.Bacterial Biodiversity in the Groundwater Contaminated by Oil[J].Environmental Science,2009,30(8):2464-2472.]
    [11]PRONK M,GOLDSCHEIDER N,ZOPFI J.Microbial Communities in Karst Groundwater and Their Potential Use for Biomonitoring[J].Hydrogeology Journal,2009,17(1):37-48.
    [12]HEMME C L,DENG Y,GENTRY T J,et al.Metagenomic Insights Into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community[J].The ISME Journal,2010,4(5):660-672.
    [13]LIU B H,LI Y H,MA J F,et al.Detection of Semi-Volatile Organic Compounds(SVOCs)in Surface Water,Soil,and Groundwater in a Chemical Industrial Park in Eastern China[J].Water Science&Technology,2015,73(5):1175-1189.
    [14]CHAO Y Q,MAO Y P,WANG Z P,et al.Diversity and Functions of Bacterial Community in Drinking Water Biofilms Revealed by High-Throughput Sequencing[J].Scientific Reports,2015,5:10044,doi:10.1038/srep10044.
    [15]PENTON C R,GUPTA V V S R,YU J L,et al.Size Matters:Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons[J].Frontiers in Microbiology,2016,7:824,doi:10.3389/fmicb.2016.00824.
    [16]薛银刚,江晓栋,孙萌,等.基于高通量测序的冬季太湖竺山湾浮游细菌和沉积物细菌群落结构和多样性研究[J].生态与农村环境学报,2017,33(11):992-1000.[XUE Yin-gang,JIANGXiao-dong,SUN Meng,et al.Structure and Diversity Profiles of Planktonic and Sediment Bacteria Communities in the Zhushan Bay of Lake Taihu in Winter Based on High-Throughput Sequencing[J].Journal of Ecology and Rural Environment,2017,33(11):992-1000.]
    [17]GB/T 14848-2017,地下水质量标准[S].[GB/T 14848-2017,Standard for Groundwater Quality[S].]
    [18]GB/T 5750-1985,生活饮用水标准检验法[S].[GB/T 5750-1985,Standard Examination Methods for Drinking Water[S].]
    [19]QUAST C,PRUESSE E,YILMAZ P,et al.The SILVA Ribosomal RNA Gene Database Project:Improved Data Processing and WebBased Tools[J].Nucleic Acids Research,2012,41(Database Issue):D590-D596.
    [20]CAPORASO J G,KUCZYNSKI J,STOMBAUGH J,et al.QIIMEAllows Analysis of High-Throughput Community Sequencing Data[J].Nature Methods,2010,7(5):335-336.
    [21]TER-BRAAK C J F,MILAUER P.CANOCO Reference Manual and CanoDraw for Windows User's Guide:Software for Canonical Community Ordination(Version 4.5)[R].New York,USA:Microcomputer Power,2002.
    [22]生静雅,朱海军,刘广勤,等.不同薄壳山核桃品种的根际土壤细菌菌群结构及多样性研究[J].生态与农村环境学报,2017,33(9):816-821.[SHENG Jing-yu,ZHU Hai-jun,LIU Guangqin,et al.Community Structure and Diversity of Soil Bacteria in Rhizospheres Under Different Varieties of Carya illinoensis[J].Journal of Ecology and Rural Environment,2017,33(9):816-821.]
    [23]GIHRING T M,GREEN S J,SCHADT C W.Massively Parallel rRNA Gene Sequencing Exacerbates the Potential for Biased Community Diversity Comparisons Due to Variable Library Sizes[J].Environmental Microbiology,2011,14(2):285-290.
    [24]HUSE S M,WELCH D M,MORRISON H G,et al.Ironing out the Wrinkles in the Rare Biosphere Through Improved OTU Clustering[J].Environmental Microbiology,2010,12(7):1889-1898.
    [25]JIA F,LAI C,CHEN L,et al.Spatiotemporal and Species Variations in Prokaryotic Communities Associated With Sediments From Surface-Flow Constructed Wetlands for Treating Swine Wastewater[J].Chemosphere,2017,185:1-10.
    [26]薛禹群,张幼宽.地下水污染防治在我国水体污染控制与治理中的双重意义[J].环境科学学报,2009,29(3):474-481.[XUE Yu-qun,ZHANG Yun-kuan.Two Fold Significance of Groundwater Pollution Prevention in China's Water Pollution Control[J].Acta Scientiae Circumstantiae,2009,29(3):474-481.]
    [27]MADSEN E L.Microorganisms and Their Roles in Fundamental Biogeochemical Cycles[J].Current Opinion in Biotechnology,2011,22(3):456-464.
    [28]FAN L M,BARRY K,HU G D,et al.Bacterioplankton Community Analysis in Tilapia Ponds by Illumina High-Throughput Sequencing[J].World Journal of Microbiology and Biotechnology,2016,32(1):1-11.
    [29]FAN L M,SONG C,MENG S L,et al.Spatial Distribution of Planktonic Bacterial and Archaeal Communities in the Upper Section of the Tidal Reach in Yangtze River[J].Scientific Reports,2016,6:39147.
    [30]LI J F,ZHANG J Y,LIU L Y,et al.Annual Periodicity in Planktonic Bacterial and Archaeal Community Composition of Eutrophic Lake Taihu[J].Scientific Reports,2015,5:15488,doi:10.1038/srep15488.
    [31]KADNIKOV V V,FRANK Y A,MARDANOV A V,et al.Uncultured Bacteria and Methanogenic Archaea Predominate in the Microbial Community of Western Siberian Deep Subsurface Aquifer[J].Microbiology,2017,86(3):412-415.
    [32]BEYER A,RZANNY M,WEIST A,et al.Aquifer Community Structure in Dependence of Lithostratigraphy in Groundwater Reservoirs[J].Environmental Science and Pollution Research,2015,22(24):19342-19351.
    [33]BRMMER I H M,FELSKE A,WAGNER-DBLER I.Diversity and Seasonal Variability ofβ-Proteobacteria in Biofilms of Polluted Rivers:Analysis by Temperature Gradient Gel Electrophoresis and Cloning[J].Applied and Environmental Microbiology,2003,69(8):4463-4473.
    [34]白洁,刘小沙,侯瑞,等.南海南部海域浮游细菌群落特征及影响因素研究[J].中国环境科学,2014,34(11):2950-2957.[BAI Jie,LIU Xiao-sha,HOU Rui,et al.Community Structure and Influencing Factors of Bacterioplankton in the Southern South China Sea[J].China Environmental Science,2014,34(11):2950-2957.]
    [35]SULTAN N S,RAIPAT B S,SINHA M P.Genetic Identification and Characterization of Soil Bacteria Using 16S r DNA Gene Sequence Analysis[J].International Journal of Advanced Research,2013,1(4):155-162.
    [36]LIM K T,SHUKOR M Y,WASOH H.Physical,Chemical,and Biological Methods for the Removal of Arsenic Compounds[J].BioMed Research International,2014,2014:503784.
    [37]RAWLINGS D E.The Molecular Genetics of Thiobacillus ferrooxidans,and Other Mesophilic,Acidophilic,Chemolithotrophic,Ironor Sulfur-Oxidizing Bacteria[J].Hydrometallurgy,2001,59(2/3):187-201.
    [38]丁轶睿,李定龙,张毅敏,等.滆湖底泥细菌群落结构及多样性[J].环境科学学报,2017,37(5):1649-1656.[DING Yi-rui,LIDing-long,ZHANG Yi-min,et al.The Structure and the Diversity of Sediment Microbial Communities in Gehu Lake[J].Acta Scientiae Circumstantiae,2017,37(5):1649-1656]
    [39]HOVEN R N V,SANTINI J M.Arsenite Oxidation by the Heterotroph Hydrogenophaga sp.str.NT-14:The Arsenite Oxidase and Its Physiological Electron Acceptor[J].Biochimica et Biophysica Acta(BBA):Bioenergetics,2004,1656(2/3):148-155.
    [40]AMALFITANO S,BON A D,ZOPPINI A,et al.Groundwater Geochemistry and Microbial Community Structure in the Aquifer Transition From Volcanic to Alluvial Areas[J].Water Research,2014,65:384-394.
    [41]WEI G S,LI J,WANG N X,et al.Spatial Abundance and Diversity of Bacterioplankton in a Typical Stream-Forming Ecosystem,Huangqian Reservoir,China[J].Journal of Microbiology and Biotechnolog,2014,24(10):1308-1318.
    [42]WANG J,LI Y,WANG P F,et al.Response of Bacterial Community Compositions to Different Sources of Pollutants in Sediments of a Tributary of Taihu Lake,China[J].Environmental Science and Pollution Research,2016,23(14):13886-13894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700