用户名: 密码: 验证码:
植物及土壤碳同位素组成对环境变化响应研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Review on the Responses of Plant and Soil Carbon Stable Isotope Composition to Environmental Change
  • 作者:周咏春 ; 张文博 ; 程希雷 ; 徐新阳
  • 英文作者:ZHOU Yongchun;ZHANG Wenbo;CHENG Xilei;XU Xinyang;School of Resources and Civil Engineering,Northeastern University;Liaoning Academy of Environmental Sciences;
  • 关键词:碳同位素组成 ; 气候因子 ; 土壤因子 ; 碳循环
  • 英文关键词:carbon isotope composition;;climatic factor;;edaphic factor;;carbon cycle
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:东北大学资源与土木工程学院;辽宁省环境科学研究院;
  • 出版日期:2018-11-09 15:13
  • 出版单位:环境科学研究
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(No.31400413);; 教育部基本科研业务费资助项目(No.N130301001);; 国家留学基金委资助项目(No.201706085003)~~
  • 语种:中文;
  • 页:33-40
  • 页数:8
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:X171
摘要
植物和土壤的δ~(13)C(碳同位素组成)能可靠记录环境信息,综合反映植物的生理生态特征以及碳循环过程中的生物化学过程,为人们理解生态系统碳循环提供有用信息.因此,研究植物和土壤的δ~(13)C与环境因子的关系可以揭示生态系统碳循环的格局及其控制因子,进而有效预测全球变化及其对生态系统的影响.对植物和土壤的δ~(13)C以及二者的差值(Δδ~(13)C)与气候因子(如温度、降水量、大气压强等)、土壤因子(如C/N、土壤质地、土壤pH等)的关系进行了综述.现有研究表明:C3植物的δ~(13)C与降水量、大气压强均呈负相关,与温度的关系非常复杂,而针对C4植物和在群落水平上开展的研究还较少;土壤δ~(13)C与降水量、土壤C/N、土壤w(粉粒)及w(黏粒)均呈负相关,与温度、土壤pH、土壤w(砂粒)均呈正相关,然而环境因素间的耦合作用使得情况复杂化,多种环境因素的匹配关系究竟如何影响土壤δ~(13)C的机制问题仍有待深入研究;Δδ~(13)C能够更加全面准确地反映土壤碳循环信息,但对其与环境因子关系的研究较少,并且影响Δδ~(13)C的驱动因子及机制也不明确.因此,在土壤-植物体系内,同时在物种和群落水平上,进行植物和土壤δ~(13)C特别是Δδ~(13)C与环境因子关系的研究,能够更加准确地预测和揭示环境变化对生态系统碳循环的影响,这也将是今后该领域的研究重点.
        Plant and soil carbon stable isotope composition( δ~(13)C) can reliably record environmental information,comprehensively reflect the physio-ecological characteristics of plants and biochemical carbon cycle processes,and provide useful information for understanding ecosystem carbon cycles. Thus,investigating the relationships between plant and soil δ~(13)C and environmental factors can reveal the patterns and controlling factors of ecosystem carbon cycles,and the potential effects of climate change on ecosystems. In this study,the relationships between plant δ~(13)C,soil δ~(13)C and Δδ~(13)C( the differences between plant and soil δ~(13)C) and temperature,precipitation,atmospheric pressure,soil C/N ratio,soil texture and soil pH were reviewed. The δ~(13)C of C3 plant was negatively related to precipitation and atmospheric pressure,while the relationship between temperature and the δ~(13)C of C3 plant was complex. Only limited studies were available on C4 plants,or mixed C3/C4 communities. Soil δ~(13)C was negatively related to precipitation,soil C/N,soil clay and silt content,positively related to temperature,soil pH and soil sand content. However,the coupling effects of environmental factors suggest that the integrated effects of environmental factors on soil δ~(13)C were worth further study. Although Δδ~(13)C could comprehensively reflect this integrated effect,studies on the relationships between Δδ~(13)C and environmental factors were limited,and the control factors of Δδ~(13)C and influencing environmental mechanisms were unclear. Based on the deficiency of existing research,we suggest that measuring plant δ~(13)C at both species and community levels,soil δ~(13)C and Δδ~(13)C simultaneously can more accurately reveal and predict the effects of environmental change on ecosystem carbon cycle,and this should be the focus of future research.
引文
[1] IPCC.Climate change 2007:impacts,adaptation and vulnerability.contribution of Working GroupⅡto the fourth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge:Cambridge University Press,2007.
    [2] VAN GROENIGEN K J,QI X,OSENBERG C W,et al. Faster decomposition under increased atmospheric CO2limits soil carbon storage[J].Science,2014,344(6183):508-509.
    [3] YANG Yuanhe,JI Chengjun,CHEN Leiyi,et al. Edaphic rather than climatic controls over13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau[J].Functional Ecology,2015,29(6):839-848.
    [4] ACTON P,FOX J,CAMPBELL E,et al. Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils[J]. Journal of Geophysical Research:Biogeosciences,2013,118(4):1532-1545.
    [5] DAWSON T E,MAMBELLI S,PLAMBOECK A H,et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics,2002,33:507-559.
    [6] KOVDA I V,MORGUN E G,GONGALSKII K B,et al. Carbon isotope composition in landscape components and its changes under different ecological conditions[J]. Biology Bulletin,2016,43(2):177-184.
    [7] LINS S R M,COLETTA L D,RAVAGNANI E D C,et al. Stable carbon composition of vegetation and soils across an altitudinal range in the coastal Atlantic Forest of Brazil[J]. Trees,2016,30(4):1315-1329.
    [8] ANGELO C L,PAU S.Root biomass and soilδ13C in C3and C4grasslands along a precipitation gradient[J]. Plant Ecology,2015,216(4):615-627.
    [9] EVARISTO J,MCDONNELL J J.Carbon,nitrogen,and water stable isotopes in plant tissue and soils across a moisture gradient in Puerto Rico[J].Hydrological Processes,2017,31(7):1558-1559.
    [10] WANG G,LI J,LIU X,et al.Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in North China and their relevance to paleovegetation reconstruction[J]. Quaternary Science Reviews,2013,63:83-90.
    [11] BAI E,BOUTTON T W,LIU Feng,et al. Spatial variation of soilδ13C and its relation to carbon input and soil texture in a subtropical lowland woodland[J]. Soil Biology&Biochemistry,2012,44(1):102-112.
    [12] FARQUHAR G D,EHLERINGER J R,HUBICK K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Biology,1989,40:503-537.
    [13] MURPHY B P,BOWMAN D M J S. The carbon and nitrogen isotope composition of Australian grasses in relation to climate[J].Functional Ecology,2009,23(6):1040-1049.
    [14] SCHULZE E,TURNER N,NICOLLE D,et al. Leaf and wood carbon isotope ratios,specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia[J]. Tree Physiology,2006,26(4):479-492.
    [15] SWAP R,ARANIBAR J,DOWTY P,et al. Natural abundance of13C and15N in C3and C4vegetation of southern Africa:patterns and implications[J]. Global Change Biology,2004,10(3):350-358.
    [16] MORECROFT M D,WOODWARD F I.Experimental investigations on the envirinmental determination ofδ13C at different altitudes[J].Journal of Experimental Botany,1990,41(231):1303-1308.
    [17] SCHULZE E,WILLIAMS R,FARQUHAR G,et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia[J]. Australian Journal of Plant Physiology,1998,25(4):413-425.
    [18]旺罗,吕厚远,吴乃琴,等.青藏高原现生禾本科植物的δ13C与海拔高度的关系[J].第四纪研究,2003,23(5):573-580.WANG Luo,LHouyuan,WU Naiqin,et al. Altitudianl trends of stable carbon isotope composition for poeceae in Qinghai-Xizang Plateau[J].Quaternary Sciences,2003,23(5):573-580.
    [19] GUO Gguangmeng,XIE Gaodi. The relationship between plant stable carbon isotope composition,precipitation and satellite data,Tibet Plateau,China[J]. Quaternary International,2006,144(1):68-71.
    [20]李嘉竹.陆地C3、C4草本植物稳定碳同位素组成及其对温度变化的响应研究[D].烟台:鲁东大学,2009.
    [21]李善家,张有福,陈拓.西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J].植物生态学报,2011,35(6):596-604.LI Shanjia,ZHANG Youfu,CHEN Tuo.Relationships between foliar stable carbon isotope composition and environmental factors and leaf element contents of Pinus tabulaeformis in northwestern China[J].Chinese Journal of Plant Ecology,2011,35(6):596-604.
    [22]冯虎元,安黎哲,陈拓等.马先蒿属(Pedicularis L.)植物稳定碳同位素组成与环境因子之间的关系[J].冰川冻土,2003,25(1):88-93.FENG Huyuan,AN Lizhe,CHEN Tuo,et al. The relationship between foliar stable carbon isotope composition in Pedicularis L.and environmental factors[J]. Journal of Glaciology and Geocryoligy,2003,25(1):88-93.
    [23] WARREN C R,MCGRATH J F,ADAMS M A. Water availability and carbon isotope discrimination in conifers[J]. Oecologia,2001,127(4):476-486.
    [24] VAN DE WATER P K,LEAVITT S W,BETANCOURT J L.Leafδ13C variability with elevation,slope aspect,and precipitation in the southwest United States[J].Oecologia,2002,132(3):332-343.
    [25] WANG Guoan,HAN Jiamao,ZHOU Liping,et al. Carbon isotope ratios of plants and occurrences of C4species under different soil moisture regimes in arid region of northwest China[J]. Physiologia Plantarum,2005,125(1):74-81.
    [26] BUCHMANN N,BROOKS J R,RAPP K D,et al. Carbon isotope composition of C4grasses is influenced by light and water supply[J].Plant Cell and Environment,1996,19(4):392-402.
    [27] HENDERSON S,VON CAEMMERER S,FARQUHAR G. Shortterm measurements of carbon isotope discrimination in several C4species[J]. Australian Journal of Plant Physiology,1992,19(3):263-285.
    [28] LIU Weiguo,FENG Xiahong,NING Youfeng,et al.δ13C variation of C3and C4plants across an Asian monsoon rainfall gradient in arid northwestern China[J].Global Change Biology,2005,11(7):1094-1100.
    [29] YANG Hao,AUERSWALD K,BAI Yongfei,et al. Variation in carbon isotope discrimination in Cleistogenes squarrosa(Trin.)Keng:patterns and drivers at tiller,local,catchment,and regional scales[J]. Journal of Experimental Botany,2011,62(12):4143-4152.
    [30] O'LEARY M. Carbon isotope fractionation in plants[J].Phytochemistry,1981,20(4):553-567.
    [31] LI Youbin,CHEN Tuo,ZHANG Youfu,et al. The relation of seasonal pattern in stable carbon compositions to meteorological variables in the leaves of Sabina przewalskii Kom. and Sabina chinensis(Lin.)Ant[J]. Environmental Geology,2007,51(7):1279-1284.
    [32] SCHLESER G,HELLE G,LUCKE A,et al. Isotope signals as climate proxies:the role of transfer functions in the study of terrestrial archives[J].Quaternary Science Reviews,1999,18(7):927-943.
    [33] LOADER N,HEMMING D. Spatial variation in pollenδ13C correlates with temperature and seasonal development timing[J].The Holocene,2001,11(5):587-592.
    [34] SAURER M,SIEGENTHALER U,SCHWEINGRUBER F. The climate-carbon isotope relationship in tree rings and the significance of site conditions[J]. Tellus Series B:Chemical and Physical Meteorology,1995,47(3):320-330.
    [35] ZHENG Shuxia,SHANGGUAN Zhouping.Spatial patterns of foliar stable carbon isotope compositions of C3plant species in the Loess Plateau of China[J].Ecological Research,2007,22(2):342-353.
    [36] SHEU D,CHIU C.Evaluation of cellulose extraction procedures for stable carbon isotope measurement in tree ring research[J].International Journal of Environmental Analytical Chemistry,1995,59(1):59-67.
    [37] MORECROFT M D,WOODWARD F I,MARRS R H. Altitudinal trends in leaf nutrient contents,leaf size andδ13C of Alchemilla alpina[J].Functional Ecology,1992,6(6):730-740.
    [38] FARQUHAR G D,WONG S C. An empirical-model of stomatal conductance[J]. Australian Journal of Plant Physiology,1984,11(3):191-209.
    [39] LI Chunyang,WU Chengchun,DUAN Baili,et al. Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercus aquifolioides along an altitudinal gradient[J].Trees,2009,23(5):1109-1121.
    [40] KRNER C,DIEMER M.In situ photosynthetic responses to light,temperature and carbon dioxide in herbaceous plants from low and high altitude[J].Functional Ecology,1987,1(3):179-194.
    [41] KRNER C, FARQUHAR G, WONG S. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends[J].Oecologia,1991,88(1):30-40.
    [42] GRACE J,BERNINGER F,NAGY L.Impacts of climate change on the tree line[J].Annals of Botany,2002,90(4):537-544.
    [43] HULTINE K R,MARSHALL J D. Altitude trends in conifer leaf morphology and stable carbon isotope composition[J]. Oecologia,2000,123(1):32-40.
    [44] GRASSI G,MINOTTA G.Influence of nutrient supply on shade-sun acclimation of Picea abies seedlings:effects on foliar morphology,photosynthetic performance and growth[J]. Tree Physiology,2000,20(10):645-652.
    [45] KARST A L,LECHOWICZ M J.Are correlations among foliar traits in ferns consistent with those in the seed plants?[J]. New Phytologist,2007,173(2):306-312.
    [46] LI Jiazhu,WANG Guoan,LIU Xianzhao,et al.Variations in carbon isotope ratios of C3plants and distribution of C4plants along an altitudinal transect on the eastern slope of Mount Gongga[J].Science in China Series D:Earth Sciences,2009,52(11):1714-1723.
    [47] ZHOU Yongchun,FAN Jiangwen,ZHANG Wenyan,et al. Factors influencing altitudinal patterns of C3plant foliar carbon isotope composition of grasslands on the Qinghai-Tibet Plateau,China[J].Alpine Botany,2011,121:79-90.
    [48] LI Mingcai,LIU Hongyan,LI Laixing,et al. Carbon isotope composition of plants along altitudinal gradient and its relationship to environmental factors on the Qinghai-Tibet Plateau[J]. Polish Journal of Ecology,2007,55(1):67-78.
    [49] LLORENS L,OSBORNE C P,BEERLING D J.Water-use responses of ‘living fossil'conifers to CO2enrichment in a simulated Cretaceous polar environment[J]. Annals of Botany,2009,104(1):179-188.
    [50] PERI P L,LADD B,PEPPER D A,et al. Carbon(δ13C)and nitrogen(δ15N)stable isotope composition in plant and soil in southern Patagonia's native forests[J]. Global Change Biology,2012,18(1):311-321.
    [51] EHLERINGER J R,BUCHMANN N,FLANAGAN L B. Carbon isotope ratios in belowground carbon cycle processes[J].Ecological Applications,2000,10(2):412-422.
    [52] WYNN J G,BIRD M I.Environmental controls on the stable carbon isotopic composition of soil organic carbon:implications for modelling the distribution of C3and C4plants,Australia[J].Tellus Series B:Chemical and Physical Meteorology,2008,60(4):604-621.
    [53] WYNN J. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols:implications for paleoecological interpretations of paleosols[J]. Palaeogeography Palaeoclimatology Palaeoecology,2007,251(3/4):437-448.
    [54] FENG Z D,WANG L X,JI Y H,et al.Climatic dependency of soil organic carbon isotopic composition along the S-N transect from 34°N to 52°N in Central-East Asia[J]. Palaeogeography Palaeoclimatology Palaeoecology,2008,257(3):335-343.
    [55] LEE Xinqing,FENG Zhaodong,GUO Lanlan,et al.Carbon isotope of bulk organic matter:a proxy for precipitation in the arid and semiarid central East Asia[J]. Global Biogeochemical Cycles,2005,19(19):2833-2845.
    [56] STEVENSON B A,KELLY E F,MCDONALD E V,et al.The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region,Washington State,USA[J].Geoderma,2005,124(1):37-47.
    [57] WANG Shaoqing,FAN Jiangwen,SONG Minghua,et al.Patterns of SOC and soil13C and their relations to climatic factors and soil characteristics on the Qinghai-Tibetan Plateau[J]. Plant and Soil,2013,363(1/2):243-255.
    [58] WINKLER J P,CHERRY R S,SCHLESINGER W H. The Q10relationship of microbial respiration in a temperate forest soil[J].Soil Biology&Biochemistry,1996,28(8):1067-1072.
    [59] MUF K. The temperature dependence of soil organic matter decomposition,and the effect of global warming on soil organic C storage[J].Soil Biology&Biochemistry,1995,27(6):753-760.
    [60] GARTEN C T,POST III W M,HANSON P J,et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry,1999,45(2):115-145.
    [61] KATO T,TANG Y,GU S,et al.Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the QinghaiTibetan Plateau,China[J]. Agricultural&Forest Meteorology,2004,124(1):121-134.
    [62] CHENG X,LUO Y,XU X,et al.Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming[J].Biogeosciences,2011,8:1487-1498.
    [63] JIA Yufu,WANG Guoan,TAN Qiqi,et al.Temperature exerted no influence on the organic carbon isotope of surface soil along the isopleth of 400 mm mean annual precipitation in China[J].Biogeosciences,2016,13:5057-5064.
    [64] WANG Guoan,JIA Yufu,WEI Li. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter[J].Scientific Reports,2015,5:11043.
    [65] POAGE M A,FENG Xiaohong.A theoretical analysis of steady stateδ13C profiles of soil organic matter[J]. Global Biogeochemical Cycles,2004.doi:10. 1029/2003GB002195.
    [66] GARTEN C T,COOPER L W,POST W M,et al.Climate controls on forest soil C isotope ratios in the southern Appalachian Mountains[J].Ecology,2000,81(4):1108-1119.
    [67] SINSABAUGH R L,CARREIRO M M,REPERT D A.Allocation of extracellular enzymatic activity in relation to litter composition,N deposition,and mass loss[J].Biogeochemistry,2002,60(1):1-24.
    [68] SAIYA-CORK K R,SINSABAUGH R L,ZAK D R.The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology&Biochemistry,2002,34(9):1309-1315.
    [69] THOMSEN I K,SCHJNNING P,JENSEN B,et al. Turnover of organic matter in differently textured soils:Ⅱ. microbial activity as influenced by soil water regimes[J]. Geoderma,1999,89(3/4):199-218.
    [70] SIX J,JASTROW J D.Organic matter turnover,in Encyclopedia of soil science[M].New York:Marcel Dekker,2002:936-942.
    [71] SCHIMEL D S,BRASWELL B H,HOLLAND E A,et al.Climatic,edaphic,and biotic controls over storage and turnover of carbon in soils[J].Global Biogeochemical Cycles,1994,8(3):279-294.
    [72] YANG Yuanhe,LI Pin,DING Jinzhi,et al.Increased topsoil carbon stock across China's forests[J]. Global Change Biology,2014,20(8):2687-2696.
    [73]关松,窦森.土壤有机质分解与转化的驱动因素[J].安徽农业科学,2006,34(10):2203-2206.GUAN Song,DOU Sen. Driving factors of the decomposition and transformation of soil organic matter[J]. Journal of Anhui Agriculture Science,2006,34(10):2203-2206.
    [74] MOTAVALLI P P,PALM C A,PARTON W J,et al.Soil p H and organic C dynamics in tropical forest soils:evidence from laboratory and simulation studies[J]. Soil Biology&Biochemistry,1995,27(12):1589-1599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700