用户名: 密码: 验证码:
1973-2018年布喀达坂峰地区前进冰川遥感监测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Remote sensing monitoring of advancing glaciers in the Bukatage Mountains from 1973 to 2018
  • 作者:高永鹏 ; 姚晓军 ; 刘时银 ; 祁苗苗 ; 段红玉 ; 刘娟 ; 张大弘
  • 英文作者:GAO Yong-peng;YAO Xiao-jun;LIU Shi-yin;QI Miao-miao;DUAN Hong-yu;LIU Juan;ZHANG Da-hong;College of Geography and Environment Science, Northwest Normal University;State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environmental and Resources,Chinese Academy of Sciences;Institute of International Rivers and Eco-Security,Yunnan University;
  • 关键词:前进冰川 ; 冰川跃动 ; 遥感监测 ; 布喀达坂峰
  • 英文关键词:advancing glacier;;glacier surges;;remote sensing monitoring;;Bukatage Mountains
  • 中文刊名:自然资源学报
  • 英文刊名:Journal of Natural Resources
  • 机构:西北师范大学地理与环境科学学院;中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室;云南大学国际河流与生态安全研究院;
  • 出版日期:2019-08-22 11:40
  • 出版单位:自然资源学报
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金项目(41561016,41861013,41801052);; 西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-14-4)
  • 语种:中文;
  • 页:101-116
  • 页数:16
  • CN:11-1912/N
  • ISSN:1000-3037
  • 分类号:TP79;P343.6;P332
摘要
冰川跃动是冰川动力不稳定性的表现,影响着全球约1%的冰川。基于1973-2018年208景Landsat MSS/TM/ETM+/OLI遥感影像,对布喀达坂峰地区不同时期前进冰川进行遥感识别。结果表明:(1)1973-2018年布喀达坂峰地区共有7条冰川发生过前进,其中冰川末端快速退缩型冰川有3条,冰川末端波动前进型和冰川末端稳定型冰川各有2条。莫诺马哈冰川和5Y542H0020冰川可能为跃动冰川,且前者正处于跃动阶。(2)近45年间布喀达坂峰地区7条冰川共出现过25次前进现象,各条冰川发生前进次数均多于(含)2次;前进冰川发生时间主要集中于2000s(7次)和1970s(6次)。该地区冰川在各月份均发生过前进现象,推断该地区前进冰川属斯瓦尔巴型。布喀达坂峰地区冰川前进无明显规律,大多数冰川两次前进时间间隔为10年左右。(3)布喀达坂峰地区冰川前进可能受热控和水控机理共同作用,单一的气候变化尚难以解释其变化机理。
        Glacier surging is a performance of glacial dynamic instabilities, which affects about1% of glaciers worldwide. Glacier surge refers to the periodically rapid movement of glacier in a short period of time(2-3 a). Compared with the monitoring of ice crevasse change in glacier ablation area and the elevation change of glacier surface, the advance of glacier terminal is the most obvious feature to identify the surging glacier from remote sensing image. Based on 208 Landsat MSS/TM/ETM+/OLI remote sensing images from 1973 to 2018, advancing glaciers at different periods in the Bukatage Mountains are recognized. Meanwhile, we have explored the factors affecting the advance of glacier with the combination of meteorological data and established the variational mode of surge glacier terminal on the basis of the existing research for surging glaciers to lay a foundation for the study of the mechanism of glacier surging in this region and provide the basis for the Chinese Advancing Glacier Dataset. The results showed that:(1) There were 7 advancing glaciers in the Bukatage Mountains range from 1973 to2018, among which 3 glaciers were in the state of fluctuating retreat and 2 glaciers in the state of advancing and fluctuating stability. We inferred that Monuomaha Glacier and the5 Y542 H0020 Glacier belonged to surging glaciers, whose fronts were in an active phase.(2)There were 25 advance events for these 7 advancing glaciers in the past 45 years. The frequency of each glacier advance was more than or equal to 2 times and the time of advance was focused on the 2000 s(7 times) and the 1970 s(6 times). Additionally, glacier advance occurred in each month, so these advancing glaciers probably belonged to Svalbard glacier.There was no obvious pattern of the glacier advance in the Bukatage Mountains. The time interval between two advances of most glaciers was 10 years.(3) The terminals of advancing glaciers in the Kunlun Mountains exerted different changing patterns because of the geographical location, glacier velocity, glacier morphology and etc. The glacial stage lasted 5 years and was longer compared with other areas of China. These 7 advancing glaciers are shown as the modes of terminal change of the "repeated type" in the Bukatage Mountains range. It was hard to solely explain the trigger mechanism that is so complex in the Kunlun Mountains.
引文
[1]VAUGHAN D G, COMISO J C, ALLISON I, et al. Observations:Cryosphere//STOCKER T F, QIN D, PLATTNER G K, et al. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2013.
    [2]GRINSTED A. An estimate of global glacier volume. The Cryosphere, 2013, 7(1):141-151.
    [3]OERLEMANS J. Quantifying global warming from the retreat of glaciers. Science, 1994, 264(5156):243-245.
    [4]姚晓军,刘时银,郭万钦,等.近50 a来中国阿尔泰山冰川变化:基于中国第二次冰川编目成果.自然资源学报,2012, 27(10):1734-1745.[YAO X J, LIU S Y, GUO W Q, et al. Glacier change of Altay Mountain in China from 1960to 2009:Based on the second glacier inventory of China. Journal of Natural Resources, 2012, 27(10):1734-1745.]
    [5]王圣杰,张明军,李忠勤,等.近50年来中国天山冰川面积变化对气候的响应.地理学报, 2011, 66(1):38-46.[WANG S J, ZHANG M J, LI Z Q, et al. Reponse of glacier area variation to climate change in Chinese Tianshan Mountains in the past 50 years. Acta Geographica Sinica, 2011, 66(1):38-46.]
    [6]上官冬辉,刘时银,丁永建,等.中国喀喇昆仑山、慕士塔格—公格尔山典型冰川变化监测结果.冰川冻土, 2004, 26(3):374-375.[SHANGGUAN D H, LIU S Y, DING Y J, et al. Monitoring results of glacier change in China Karakorum and Muztag Ata-Konggur Mountain by remoye sensing. Journal of Glaciology and Geocryology, 2004, 26(3):374-375.]
    [7]孙美平,刘时银,姚晓军,等.近50年来祁连山冰川变化:基于中国第一、二次冰川编目数据.地理学报, 2015, 70(9):1402-1414.[SUN M P, LIU S Y, YAO X J, et al. Glacier change in the Qilian Mountains in the past half century:Based on the revised first and second Chinese glacier inventory. Acta Geographica Sinica, 2015, 70(9):1402-1414.]
    [8]WEI J F, LIU S Y, GUO W Q, et al. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Annals of Glaciology, 2014, 55(66):151-155.
    [9]LIU S Y, SHANGGUAN D H, DING Y J, et al. Glacier changes during the past century in the Gangrigabu Mountains,Southeast Qinghai-Xizang(Tibetan)Plateau, China. Annals of Glaciology, 2006, 43(1):187-193.
    [10]叶庆华,姚檀栋,郑红星,等.西藏玛旁雍错流域冰川与湖泊变化及其对气候变化的响应.地理研究, 2008, 27(5):1178-1190.[YE Q H, YAO T D, ZHENG H X, et al. Glacier and lake co-variations and their responses to climate change in the Mapam Yumco Basin on Tibet. Geographical Research, 2008, 27(5):1178-1190.]
    [11]BAO W J, LIU S Y, WEI J F, et al. Glacier changes during the past 40 years in the West Kunlun Shan. Journal of Mountain Science, 2015, 12(2):344-357.
    [12]WEI J F, LIU S Y, GUO W Q, et al. Changes in glacier volume in the north bank of the Bangong Co Basin from 1968 to2007 based on historical topographic maps, SRTM, and ASTER stereo images. Arctic, Antarctic, and Alpine Research,2015, 47(2):301-311.
    [13]XU J L, LIU S Y, ZHANG S Q, et al. Recent changes in glacial area and volume on Tuanjiefeng peak region of Qilian Mountains, China. Plos One, 2013, 8(8):e70574-e70574.
    [14]PIECZONKA T, TOBIAS B, WEI J, et al. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment(Central Tien Shan)revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment, 2013,130(4):233-244.
    [15]魏俊锋.基于多源遥感数字高程模型的中国西部冰川冰量变化研究.兰州:中国科学院寒区旱区环境与工程研究所, 2015.[WEI J F. Mass change of Western China based on multi-source remote sensing digital elevation model. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, 2015]
    [16]刘时银,姚晓军,郭万钦,等.基于第二次冰川编目的中国冰川现状.地理学报, 2015, 70(1):3-16.[LIU S Y, YAO X J, GUO W Q, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographica Sinica, 2015, 70(1):3-16.]
    [17]HEWITT K. The Karakoram anomaly? Glacier expansion and the elevation effect, karakoram himalaya. Mountain Research&Development, 2005, 25(4):332-340.
    [18]GARDELLE J, BERTHIER E, ARNAUD Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 2013, 7(4):1263-1286.
    [19]NECKEL N, KROPá?EK J, BOLCH T, et al. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements. Environmental Research Letters, 2014, 9(9):468-475.
    [20]BRUN F, BERTHIER E, WAGNON P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances,2000-2016. Nature Geoscience, 2017, 10(9):668-674.
    [21]CUFFEY K M, PETERSON W S B. The Physics of Glaciers(Fouth Edition). Elsevier, 2010.
    [22]RANKL M, KIENHOLZ C, BRAUN M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. The Cryosphere, 2014, 8(3):4065-4099.
    [23]YASUDA T, FURUYA M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. Journal of Geophysical Research Earth Surface, 2016, 120(11):2393-2405.
    [24]YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2012, 2(9):663-667.
    [25]郭万钦,刘时银,许君利,等.木孜塔格西北坡鱼鳞川冰川跃动遥感监测.冰川冻土, 2012, 34(4):765-774.[GUO W Q, LIU S Y, XU J L, et al. Monitoring recent surging of the Yulinchuan Glacier on north slopes of Muztag Rang by remote sensing. Journal of Glaciology and Geocryology, 2012, 34(4):765-774.]
    [26]张震,刘时银,魏俊锋,等.新疆帕米尔跃动冰川遥感监测研究.冰川冻土, 2016, 38(1):11-20.[ZHANG Z, LIU S Y,WEI J F, et al. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing. Journal of Glaciology and Geocryology, 2016, 38(1):11-20.]
    [27]ROUND V, LEINSS S, HUSS M, et al. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram. The Cryosphere, 2017, 11(2):1-28.
    [28]许艾文,杨太保,王聪强,等. 1978-2015年喀喇昆仑山克勒青河流域冰川变化的遥感监测.地理科学进展, 2016, 35(7):878-888.[XU A W, YANG T B, WANG C Q, et al. Variation of glaciers in the Shaksgam River Basin, Karakoram Mountains during 1978-2015. Progress in Geography, 2016, 35(7):878-888.]
    [29]金姗姗,张永红,吴宏安.近40 a长江源各拉丹冬冰川进退变化研究.自然资源学报, 2013, 28(12):2095-2104.[JIN S S, ZHANG Y H, WU H A. Study on glacial advancement and retreatment in Geladandong region of Changjiangyuan in recent 40 years. Journal of Natural Resources, 2013, 28(12):2095-2104.]
    [30]吴坤鹏,刘时银,鲍伟佳,等. 1980-2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测.冰川冻土, 2017, 39(1):24-34.[WU K P, LIU S Y, BAO W J, et al. Remote sensing monitoring of the glacier change in the Gangrigabu Range, Southeast Tibetan Plateau from 1980 through 2015. Journal of Glaciology and Geocryology, 2017, 39(1):24-34.]
    [31]刘凯,王宁练,白晓华. 1993-2015年喀喇昆仑山努布拉流域冰川变化遥感监测.冰川冻土, 2017, 39(4):710-719.[LIU K, WANG N L, BAI X H. Variation of glaciers in the Nubra Basin, Karakoram Mountains, revealed by remote sensing images during 1993-2015. Journal of Glaciology and Geocryology, 2017, 39(4):710-719.]
    [32]K??B A, LEINSS S, GILBERT A, et al. Massive collapse of two glaciers in Western Tibet in 2016 after surge-like instability. Nature Geoscience, 2018, 11(2):1-13.
    [33]ZHANG Z, LIU S, ZHANG Y, et al. Glacier variations at Aru Co in Western Tibet from 1971 to 2016 derived from remote-sensing data. Journal of Glaciology, 2018, 64(245):1-10.
    [34]姜珊,杨太保,王秀娜,等. 1973-2010年布喀塔格峰冰川波动对气候变化的响应.干旱区资源与环境, 2013, 27(3):47-52.[JIANG S, YANG T B, WANG X N, et al. Respinse of glacier variation to climate change in the Bukatage Ice Cap from 1973 to 2010. Journal of Arid Land Resources and Environment, 2013, 27(3):47-52.]
    [35]胡凡盛,杨太保,冀琴,等.近25 a布喀达坂峰冰川变化与气候的响应.干旱区地理, 2018, 41(1):66-73.[HU F S,YANG T B, JI Q, et al. Response of glacier in the Bukatage Mountains to climate change from 1990 to 2015. Arid Land Geography, 2018, 41(1):66-73.]
    [36]ZENG C, SHEN H F, ZHANG L P. Recovering missing pixels for Landsat ETM+SLC-off imagery using multi-temporal regression analysis and a regularization method. Remote Sensing of Environment, 2013, 131:182-194.
    [37]GUO W Q, LIU S Y, XU J L, et al. The second Chinese glacier inventory:Data, methods and results. Journal of Glaciology, 2015, 61(226):357-372.
    [38]RANKL M, KIENHOLZ C, BRAUN M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. The Cryosphere, 2014, 8(3):4065-4099.
    [39]姚晓军,刘时银,朱钰,等.基于GIS的冰川中流线自动提取方法设计与实现.冰川冻土, 2015, 37(6):1563-1570.[YAO X J, LIU S Y, ZHU Y, et al. Design and implementation of an automatic method for deriving glacier centerlines based on GIS. Journal of Glaciology and Geocryology, 2015, 37(6):1563-1570.]
    [40]BOLCH T, MENOUNOS B, WHEATE R. Landsat-based inventory of glaciers in Western Canada, 1985-2005. Remote Sensing of Environment, 2010, 114(1):127-137.
    [41]RACOVITEANU A E, PAUL F, RAUP B, et al. Challenges and recommendations in mapping of glacier parameters from space:Results of the 2008 Global Land Ice Measurements from Space(GLIMS)workshop, Boulder, Colorado,USA. Annals of Glaciology, 2009, 50(53):53-69.
    [42]SHI Y F. Concise Glacier Inventory of China. Shanghai:Shanghai Popular Science Press, 2008.
    [43]段建平,王丽丽,任贾文,等.近百年来中国冰川变化及其对气候变化的敏感性研究进展.地理科学进展, 2009, 28(2):231-237.[DUAN J P, WANG L L, REN J W, et al. Progress in glacier variations in China and its sensitivity to climatic change during the past century. Progress in Geography, 2009, 28(2):231-237.]
    [44]WANG Y T, HOU S G, HUAI B J, et al. Glacier anomaly over the Western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. Journal of Glaciology, 2018, 64(255):1-13.
    [45]EVANS I S. Local aspect asymmetry of mountain glaciation:A global survey of consistency of favored directions for glacier numbers and altitudes. Geomorphology, 2006, 73(1):166-184.
    [46]EVANS I S, COX N J. Climatogenic north-south asymmetry of local glaciers in Spitsbergen and other parts of the Arctic. Annals of Glaciology, 2014, 51(51):16-22.
    [47]HODGKINS R, FOX A, NUTTALL A M. Geometry change between 1990 and 2003 at Finsterwalderbreen, a Svalbard surge-type glacier, from GPS profiling. Annals of Glaciology, 2007, 46(1):131-135.
    [48]冀琴,杨太保,李霞.念青唐古拉山东段八盖乡地区近40年冰川与气候变化研究.水土保持研究, 2014, 21(2):306-310.[JI Q, YANG T B, LI X. Study on relationship between glacier retreat and climate change in the Eastern Nyainqentanglha in the past 40 years. Research of Soil and Water Conservation, 2014, 21(2):306-310.]
    [49]CLARKE G K C. Length, width and slope influences on glacier surging. Journal of Glaciology, 1990, 37(126):236-246.
    [50]WEERTMAN J. Water lubrication mechanism of glacier surges. Canadian Journal of Earth Sciences, 1969, 6(4):929-942.
    [51]WEERTMAN J. General theory of water flow at the base of a glacier or ice sheet. Reviews of Geophysics, 1972, 10(1):287-333.
    [52]HEWITT K. Tributary glacier surges:An exceptional concentration at Panmah Glacier, Karakoram Himalaya. Journal of Glaciology, 2007, 53(181):181-188.
    [53]HAMISH P, TAVI M, ADRIAN L, et al. Glacier surge dynamics of Sortebr?, east Greenland, from synthetic aperture radar feature tracking. Journal of Geophysical Research Earth Surface, 2005, 110(F3):4-13.
    [54]QUINCEY D J, GLASSER N F, COOK S J, et al. Heterogeneity in Karakoram glacier surges. Journal of Geophysical Research Earth Surface, 2015, 120(7):1288-1300.
    [55]CLARKE G K C, SCHMOK J P, OMMANNEY C S L, et al. Characteristics of surge-type glaciers. Journal of Geophysical Research Solid Earth, 1986, 91(B7):7165-7180.
    [56]DUNSE T, SCHELLENBERGER T, HAGEN J O, et al. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. The Cryosphere, 2015, 9(1):197-215.
    [57]ROBIN G DE Q, WEERTMAN J. Cyclic surging of glaciers. Journal of Glaciology, 1973, 12(64):3-18.
    [58]MEIER M F, POST A. What are glacier surges?. Canadian Journal of Earth Sciences, 1969, 6(4):807-817.
    [59]KAMB B, RAYMOND C F, HARRISON W D, et al. Glacier surge mechanism:1982-1983 surge of variegated glacier,Alaska. Science, 1985, 227(4686):469-479.
    [60]MURRAY T, STUART G W, MILLER P J, et al. Glacier surge propagation by thermal evolution at the bed. Journal of Geophysical Research Solid Earth, 2000, 105(B6):13491-13507.
    [61]FOWLER A C, MURRAY T, NG F S L. Thermally controlled glacier surging. Journal of Glaciology, 2001, 47(159):527-538.
    [62]MACKINTOSH A N, ANDERSON B M, LORREY A M, et al. Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nature Communications, 2017, 8(14202):1-13.
    [63]JAMIESON S S, EWERTOWSKI M W, EVANS D J. Rapid advance of two mountain glaciers in response to mine-related debris loading. Journal of Geophysical Research Earth Surface, 2015, 120(7):1418-1435.
    [64]FRAPPéT P, CLARKE G K C. Slow surge of Trapridge Glacier, Yukon Territory, Canada. Journal of Geophysical Research Earth Surface, 2007, 112(F3):1-17.
    [65]BOULTON G S, JONES A S. Stability of temperate ice caps and ice sheets resting on beds of deformable sediment.Journal of Glaciology, 1979, 24(90):29-43.
    [66]李原,王瑾,薛宁,等.东昆仑西段布喀达坂峰地区早更新世河湖相地层的发现及初步研究.西北地质, 2004, 37(1):58-62.[LI Y, WANG J, XUE N, et al. Discovery and study of the Early Pleistocene river and lake facies stratum in Bukedaban area of the western segment in the eastern Kunlun Mt. Northwestern Geology, 2004, 37(1):58-62.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700