用户名: 密码: 验证码:
里氏木霉利用玉米秸秆形成类胡敏酸(HAL)的特异性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Specificity of humic acid-like(HAL) substance from Trichoderma reesei-inoculated corn straw
  • 作者:张一枫 ; 窦森 ; 叶淑芬 ; 张丹丹
  • 英文作者:ZHANG Yi-feng;DOU Sen;YE Shu-fen;ZHANG Dan-dan;College of Resources and Environment, Jilin Agricultural University;
  • 关键词:腐殖化 ; 玉米秸秆 ; 里氏木霉 ; 腐殖质特异性 ; 类胡敏酸
  • 英文关键词:humification;;corn straw;;Trichoderma reesei;;specificity of humic substance;;humic acid-like(HAL)
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:吉林农业大学资源与环境学院;
  • 出版日期:2019-09-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:09
  • 基金:国家重点研发计划项目(2016YFD0200304);; 国家自然科学基金项目(41571231);; 吉林省秸秆综合利用平台项目(2014C-1)~~
  • 语种:中文;
  • 页:180-188
  • 页数:9
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X712
摘要
为探明里氏木霉(Trichoderma reesei)在腐殖化过程中,不同培养时间下利用玉米秸秆得到的培养产物(HLS)的碱提取物——类胡敏酸(HAL)的结构特征是否具有与土壤胡敏酸相似的特异性,通过固体培养的方式模拟秸秆堆肥,在玉米秸秆中添加里氏木霉进行为期30 d的腐殖化培养,并以灭菌后不添加微生物的处理作为对照,在培养的0、15、30 d采样观察研究。通过元素组成、红外光谱及差热的技术手段对里氏木霉利用玉米秸秆形成的类胡敏酸(HAL)进行分析,与土壤的胡敏酸(HA)比较观察其特异性。对比CK,在模拟腐殖化的过程中,接种里氏木霉可以显著改变其HAL的结构特征,其芳香性/脂族性的比例变化符合多酚学说。里氏木霉可以在30 d内将HAL的元素结构集中在O/C=0.528、H/C=1.322左右,与土壤HA的O/C值、H/C值差异缩减了71.08%、49.25%,使其更加接近土壤HA的结构特征。总体来看,里氏木霉在分解矿化玉米秸秆中纤维素和木质素的同时,可以有效促进玉米秸秆向腐殖质的转化,其形成的HAL的结构变化支持了多酚学说。里氏木霉培养下的HAL可随着腐殖化培养时间的增加,与土壤HA的结构特征差异持续缩小,逐渐具有特异性。
        To investigate the structural features of humic acid-like(HAL)substance from corn straw during the humification process of Trichoderma reesei, the alkaline extract of the culture product(Humic-like substances, HLS)was obtained. The extract demonstrated similar specificities to soil HA. Corn straw composting was simulated using solid culture. The humification process of corn straw was simulated for a period of 30 d using two treatments:(1)adding T. reesei and(2)uninoculated control after sterilization(CK). Samples were collected at 0, 15 d, and 30 d for observation. The HAL substance formed by T. reesei using corn straw were analyzed using elemental composition, infrared spectroscopy, and differential thermal techniques, and the specificity was determined from comparison with soil HA. The results showed that, compared with CK, inoculation with T. reesei significantly changed the structural characteristics of HAL substances and the ratio of aromatics/aliphatics during humification, which is in accordance with polyphenol theory. T. reesei concentrated the elemental structure of the HAL substance at O/C=0.528 and H/C=1.322 on day 30, and the difference between HAL and HA was reduced by 71.08% and49.25%, with the HAL displaying similarity with the structural characteristics of HA. In general, T. reesei can effectively promote the conversion of corn straw to humus through cellulose and lignin decomposition and structural changes in HAL substances. The differences between the structural characteristics of soil HA and HAL from T. reesei culture decrease significantly during the humification process.
引文
[1]唐景春,孙青,王如,等.堆肥过程中腐殖酸的生成演化及应用研究进展[J].环境污染与防治,2010(5):73-77,88.TANG Jing-chun,SUN Qing,WANG Ru,et al.Progress in the formation,evolution and application of humic acid during composting[J].Environmental Pollution and Prevention,2010(5):73-77,88.
    [2]Zhang L,Zhang H,Wang Z,et al.Dynamic changes of the dominant functioning microbial community in the compost of a 90 m3aerobic solid state fermentor revealed by integrated meta-omics[J].Bioresoure Technology,2016,203:1-10.
    [3]Zhang X,Zhong Y,Yang S,et al.Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production[J].Bioresource Technology,2014,170:183-195.
    [4]窦森,李艳,关松,等.腐殖物质特异性及其产生机制[J].土壤学报,2016(4):821-831,53.DOU Sen,LI Yan,GUAN Song,et al.The structural distinctiveness of humic substances and its formation mechanism in simulated incubation[J].Acta Pedologica Sinica,2016(4):821-831,53.
    [5]Rodríguez F J,Schlenger P,García-Valverde M.A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation.Part I:Structural characterization of humic substances[J].Science of the Total Environment,2014,476/477:718-730.
    [6]Schulten H R,Schnitzer M.A state of the art structural concept for humic substances[J].Naturwissenschaften,1993,80:29-30.
    [7]Kelleher B P,Simpson A J.Humic substances in soils:Are they really chemically distinct?[J].Environmental Science&Technology,2006,40:4605-4611.
    [8]Kawasaki S,Maie N,Watanabe A.Composition of humic acids with respect to the degree of humification in cultivated soils with and without manure application as assessed by fractional precipitation[J].Soil Science and Plant Nutrition,2008,54(1):57-61.
    [9]Camiatelli P,Ceppi S.Effects of composting technologies on the chemical and physicochemical properties of humic acids[J].Geoderma,2008,144(1/2):325-333.
    [10]Quagiltto P L,Montonoeri E,Tambone F,et al.Chemicals from wastes:Compost-derived humic acid-like matter as surfactant[J].Environment Science Technology,2006,40(5):1686-1692.
    [11]Genevini P,Adani F,Veeken A H,et al.Qualitative modifications of humic acid-like and core-humic acid-like during high-rate composting of pig faeces amended with wheat straw[J].Soil Science and Plant Nutrition,2002b,48(2):143-150.
    [12]付丽丽.作为秸秆纤维素降解菌的分离与筛选[D].杭州:浙江大学,2012.FU Li-li,Separation and screening of straw cellulose degrading bacteria[D].Hangzhou:Zhejiang University,2012.
    [13]Bahri H,Rasse D P,Rumpel C,et al.Lignin degradation during a laboratory incubation followed by13C isotope analysis[J].Soil Biology and Biochemistry,2008,40(7):1916-1922.
    [14]Sánchez C.Lignocellulosic residues:Biodegradation and bioconversion by fungi[J].Biotechnology Advances,2009,27(2):185-194.
    [15]Grover M,Maheswari M,Desai S,et al.Elevated CO2:Plant associated microorganisms and carbon sequestration[J].Applied Soil Ecology,2015,95:73-85.
    [16]Liang C,Schimel J P,Jastrow J D.The importance of anabolism in microbial control over soil carbon storage[J].Nature Microbiology,2017:2(8):17105.
    [17]宋仅星.新型稻草还田多功能复合菌系的构建及其功能研究[D].合肥:安徽农业大学,2011.SONG Jin-xing.Construction and functional study of a novel multifunctional compound strain of straw returning to the field[D].Hefei:Anhui Agricultural University,2011.
    [18]Reynaldo D C,Felipe R P,Cristóbal N A,et al.Forced aeration inluence on the production of spores by Trichoderma strains[J].Waste Biomass Valorization,2017,8:2263-2270.
    [19]Gasto’n E O,Mar?’a E G,et al.Characterization,optimization,and scale-up of cellulases production by Trichoderma reesei cbs 836.91in solid-state fermentation using agro-industrial products[J].Bioprocess Biosystems Engineering,2015,38:2117-2128.
    [20]Kumada K,Sato O,Ohsumi Y,et al.Humus composition of maintain soil in central Japan with special reference to the distribution of P-type humic acid[J].Soil Science and Plant Nutrition,1967,13(5):151-158.
    [21]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:30-34.LU Ru-kun.Soil agricultural chemical analysis method[M].Beijing:China Agricultural Science and Technology Press,2000:30-34.
    [22]Kuwatsuka S,Watanabe A,Itoh K,et al.Comparison of two methods of preparation of humic and fulvic acids,IHSS method and NAGOYAmethod[J].Soil Science and Plant Nutrition,1992,38(1):23-30.
    [23]窦森.土壤有机质[M].北京:科学出版社,2010:95-98.DOU Sen.Soil organic matter[M].Beijing:Science Press,2010:95-98.
    [24]Filip Z,TesarováM.Microbial degradation and transformation of humic acids from permanent meadow and forest soils[J].Intrenational Biodeterioration&Biodegradation,2004,54:225.
    [25]Zhang Y L,Du J Z,Zhang F F,et al.Chemical characterization of hu-389mic substances isolated from mangrove swamp sediments:The Qinglan area of Hainan Island,China[J].Estuarine,Coastal and Shelf Science,2011,93:220.
    [26]肖彦春,窦森.土壤腐殖质各组分红外光谱研究[J].分析化学,2007,11(35):1596.XIAO Yan-chun,DOU Sen.Infrared spectroscopy study on various components of soil humus[J].Chinese Journal of Analytical Chemistry,2007,11(35):1596.
    [27]Zhang J J,Hu F,Li H X,et al.Effects of earthworm activity on humus composition and humic acid characteristics of soil in a maize residue amended rice-wheat rotation agroecosystem[J].Applied Soil Ecology,2011,51:1-8.
    [28]Juradom M,Suárez-estrella F,López M J,et al.Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting[J].Bioresource Technology,2015,186:15-24.
    [29]李国平,杨鹭生,王宇晴,等.不同微生物菌剂对芒萁秸秆腐熟过程中腐殖质构成的影响[J].热带作物学报,2015,36(4):719-723.LI Guo-ping,YANG Lu-sheng,WANG Yu-qing,et al.Effects of several microorganisms on humus formation in stalk decomposition of Dicranopteris dichotoma[J].Chinese Journal of Tropical Crops,2015,36(4):719-723.
    [30]Iqbal M K,Shafiq T,Hussain A,et al.Effect of enrichment on chemical properties of MSW compost[J].Bioresource Technology,2010,101(15):5969-5977.
    [31]Eneji A E,Honna,T,Yamamoto S,et al.Changes in humic substances and phosphorus fractions during composting[J].Communications in Soil Science and Plant Analysis,2003,34:15-16.
    [32]Amir S,Jouraiphy A,Meddich A,et al.Structural study of humic acids during composting of activated sludge-green waste:Elemental analysis,FTIR and13C NMR[J].Journal of Hazardous Materials,2010,177(1/2/3):524-529.
    [33]Sánchez-Monedero M,Roig A,Cegarra J,et al.Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting[J].Bioresource Technology,1999,70(2):193-201.
    [34]Adani F,Ricca G.The contribution of alkali soluble(humic acidlike)and unhydrolyzed-alkali soluble(core-humic acid-like)fractions extracted from maize plant to the formation of soil humic acid[J].Chemosphere,2004,56(1):13-22.
    [35]Jouraiphy A,Amir S,Winterton P,et al.Structural study of the fulvic fraction during composting of activated sludge-plant matter:Elemental analysis,FTIR and13C NMR[J].Bioresource Technology,2008,99(5):1066-1072.
    [36]Awasthi M K,Pandey A K,Khan J,et al.Evaluation of thermophilic fungal consortium for organic municipal solid waste composting[J].Bioresource Technology,168:214-221.
    [37]González-Pérez M,Torrado P V,A Colnaga L A,et al.13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil[J].Geoderma,2008,146:425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700