用户名: 密码: 验证码:
大兴安岭落叶松林不同演替阶段土壤细菌群落结构与功能潜势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil bacterial community structure and predicted functions in the larch forest during succession at the Greater Khingan Mountains of Northeast China
  • 作者:李萍 ; 史荣久 ; 赵峰 ; 于景华 ; 崔晓阳 ; 胡金贵 ; 张颖
  • 英文作者:LI Ping;SHI Rong-jiu;ZHAO Feng;YU Jing-hua;CUI Xiao-yang;HU Jin-gui;ZHANG Ying;Key Laboratory of Pollution Ecology and Environmental Engineering,Institute of Applied Ecology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Northeast Forestry University;Inner Mongolia Hanma National Nature Reserve Administration;
  • 关键词:落叶松 ; 16S ; rDNA ; 土壤细菌多样性 ; 功能预测 ; 元素循环
  • 英文关键词:larch;;16S r DNA;;soil bacterial diversity;;function predicting;;element cycle
  • 中文刊名:应用生态学报
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:中国科学院沈阳应用生态研究所污染生态与环境工程重点实验室;中国科学院大学;东北林业大学;内蒙古汗马自然保护区管理局;
  • 出版日期:2018-10-25 17:08
  • 出版单位:应用生态学报
  • 年:2019
  • 期:01
  • 基金:中国科学院战略性先导科技专项(B类)(XDB15000000);; 科技部基础性工作专项(2014FY110600)资助~~
  • 语种:中文;
  • 页:98-110
  • 页数:13
  • CN:21-1253/Q
  • ISSN:1001-9332
  • 分类号:S714.3
摘要
采用土壤细菌16S r DNA高通量测序方法研究了大兴安岭汗马自然保护区落叶松林不同演替阶段的土壤细菌群落结构和功能.结果表明:不同演替阶段落叶松林土壤细菌优势门为变形菌门、酸杆菌门、疣微菌门、拟杆菌门、放线菌门、浮霉菌门和绿弯菌门,随着演替的进行,酸杆菌门相对丰度逐渐增加,绿弯菌门相对丰度逐渐减少,优势门相对丰度在不同演替阶段不同.细菌群落α多样性在不同演替阶段间无显著差异,但其群落结构分别在落叶松幼龄林与中龄林、幼龄林与过熟林、近熟林与成熟林之间存在显著差异.土壤氧化还原电位、土壤p H和有效磷是影响细菌群落结构的主要环境因素,其中土壤氧化还原电位对微生物群落结构影响最大.随着演替的进行,细菌参与的固氮作用、反硝化作用、氨氧化作用、木质素降解作用呈逐渐减弱的趋势,硫酸盐异化还原作用呈先降后升的趋势,碳固定作用呈先升后降的趋势,碱性磷酸酶没有明显的变化规律,影响土壤功能的主要因素有土壤有效磷和氧化还原电位等.
        To reveal soil bacterial community structure and potential functions in larch forest during succession at Greater Khingan Mountains( Hanma National Nature Reserve),16 S r DNA was sequencing by Illumina Miseq. The results showed that the Proteobacteria,Acidobacteria,Verrucomicrobia,Bacteroidetes,Actinobacteria,Planctomycetes and Chloroflexi were the most dominant phyla in soils of larch forests at various successional stages. Along forest succession,Acidobacteria increased,while Chloroflexi decreased. Relative abundance of dominant phyla was different at various successional stages. The α diversity,Chao1,Shannon index and Simpson index of soil bacterial community had no significant difference among five succession stages,while significant differences in soil bacterial community structure were observed between young and medium larch,between young and over mature larch,and between near mature and mature larch. Bacterial community structure was mainly influenced by redox potential,pH and available phosphorus. The redox potential was the most important factor influencing soil bacterial community structure. Along the succession of larch forest,N-fixation,denitrification,ammonia oxidation and lignin breakdown decreased,dissimilatory sulfate reduction had down-up trend,carbon fixation had up-down trend,and alkaline phosphatase had no apparent trend. Bacterial community potential function was mainly influenced by redox potential and available phosphorus.
引文
[1]Mao C(毛超),Qi L-H(漆良华).Research advances on nitrogen transformation and cycling in forest soil.World Forest Research(世界林业研究),2015,28(2):8-13(in Chinese)
    [2]Gou X-L(苟小林).Effects of Simulated Climate Warming on Soil Carbon and Nitrogen Transformation in the Alpine Forest of Western Sichuan.Master Thesis.Ya’an:Sichuan Agricultural University,2014(in Chinese)
    [3]LladóS,López-Mondéjar R,Baldrian P.Forest soil bacteria:Diversity,involvement in ecosystem processes,and response to global change.Microbiology and Molecular Biology Reviews,2017,81:e00063-16,doi:10.1128/mmbr.00063-16
    [4]Kamimura N,Takahashi K,Mori K,et al.Bacterial catabolism of lignin-derived aromatics:New findings in a recent decade:Update on bacterial lignin catabolism.Environmental Microbiology Reports,2017,9:679-705
    [5]Bani A,Pioli S,Ventura M,et al.The role of microbial community in the decomposition of leaf litter and deadwood.Applied Soil Ecology,2018,126:75-84
    [6]He J-Z(贺纪正),Zhang L-M(张丽梅).Key processes and microbial mechanisms of soil nitrogen transformation.Microbiology China(微生物学通报),2013,40(1):98-108(in Chinese)
    [7]Zhao S-H(赵少华),Yu W-T(宇万太),Zhang L(张璐),et al.Research advance in soil organic phosphorus.Chinese Journal of Applied Ecology(应用生态学报),2004,15(11):2189-2194(in Chinese)
    [8]Zhang B-G(张宝贵),Li G-T(李贵桐).Roles of soil organisms on the enhancement of plant availability of soil phosphorus.Acta Pedologica Sinica(土壤学报),1998,35(1):104-111(in Chinese)
    [9]Liu X-Z(刘新展),He J-Z(贺纪正),Zhang L-M(张丽梅).The sulfate reducing bacteria and surfer cycle in paddy soil.Acta Ecologica Sinica(生态学报),2009,29(8):4455-4463(in Chinese)
    [10]Gobat JM,Aragno M,Matthey W.The Living Soil:Fundamentals of Soil Science and Soil Biology.Plymouth,UK:Science Publishers Press,2004
    [11]Schmidt SK,Nemergut DR,Darcy JL,et al.Do bacterial and fungal communities assemble differently during primary succession?Molecular Ecology,2014,23:254-258
    [12]Yarwood SA,H9gberg MN.Soil bacteria and archaea change rapidly in the first century of Fennoscandian boreal forest development.Soil Biology and Biochemistry,2017,114:160-167
    [13]Banning NC,Gleeson DB,Grigg AH,et al.Soil microbial community successional patterns during forest ecosystem restoration.Applied and Environmental Microbiology,2011,77:6158-6164
    [14]Zeng Q,An S,Liu Y.Soil bacterial community response to vegetation succession after fencing in the grassland of China.Science of the Total Environment,2017,609:2-10
    [15]Fierer N,Jackson RB.The diversity and biogeography of soil bacterial communities.Proceedings of the National Academy of Sciences of the United States of America,2006,103:626-631
    [16]Fierer N,Strickland MS,Liptzin D,et al.Global patterns in belowground communities.Ecology Letters,2009,12:1238-1249
    [17]Rousk J,Bth E,Brookes PC,et al.Soil bacterial and fungal communities across a p H gradient in an arable soil.The ISME Journal,2010,4:1340-1351
    [18]Brockett BFT,Prescott CE,Graystonet SJ.Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada.Soil Biology and Biochemistry,2012,44:9-20
    [19]Landesman WJ,Nelson DM,Fitzpatrick MC.Soil properties and tree species driveβ-diversity of soil bacterial communities.Soil Biology and Biochemistry,2014,76:201-209
    [20]Sun H(孙海),Wang Q-X(王秋霞),Zhang C-G(张春阁),et al.Effects of different leaf litters on the physicochemical properties and soil microbial communities in Panax ginseng-growing soil.Acta Ecologica Sinica(生态学报),2018,38(10):1-13(in Chinese)
    [21]Baldrian P,Kolarˇík M,tursovM,et al.Active and total microbial communities in forest soil are largely different and highly stratified during decomposition.The ISME Journal,2012,6:248-258
    [22]Lin YT,Jangid K,Whitman WB,et al.Soil bacterial communities in native and regenerated perhumid montane forests.Applied Soil Ecology,2011,47:111-118
    [23]Van Elsas JD,Boersma FGH,et al.A review of molecular methods to study the microbiota of soil and the mycosphere.European Journal of Soil Biology,2011,47:77-87
    [24]Asshauer KP,Wemheuer B,Daniel R,et al.Tax4Fun:Predicting functional profiles from metagenomic 16SrRNA data.Bioinformatics,2015,31:2882-2884
    [25]Wemheuer F,Kaiser K,Karlovsky P,et al.Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes.Scientific Reports,2017,7:1-11
    [26]Herzog S,Wemheuer F,Wemheuer B,et al.Effects of fertilization and sampling time on composition and diversity of entire and active bacterial communities in german grassland soils.PLo S One,2015,10(12):e0145575,doi:10.1371/journal.pone.0145575
    [27]Kaiser K,Wemheuer B,Korolkow V,et al.Driving forces of soil bacterial community structure,diversity,and function in temperate grasslands and forests.Scientific Reports,2016,6:1-10
    [28]Yang K(杨琨),Khan MA.Not disturbed old-growth forest.Forest&Humankind(森林与人类),2015(9):194-199(in Chinese)
    [29]Tamaki H,Wright CL,Li X,et al.Analysis of 16SrRNA amplicon sequencing options on the Roche/454next-generation titanium sequencing platform.PLo SOne,2011,6(9):e25263,doi:10.1371/journal.pone.0025263
    [30]Edgar RC.UPARSE:Highly accurate OTU sequences from microbial amplicon reads.Nature Methods,2013,10:996-998
    [31]Ferrier S,Manion G,Elith J,et al.Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment.Diversity and Distributions,2007,13:252-264
    [32]Shen JP,Cao P,Hu HW,et al.Differential response of archaeal groups to land use change in an acidic red soil.Science of the Total Environment,2013,461:742-749
    [33]Landesman WJ,Nelson DM,Fitzpatrick MC.Soil properties and tree species driveβ-diversity of soil bacterial communities.Soil Biology and Biochemistry,2014,76:201-209
    [34]Ashcroft MB,Gollan JR,Faith DP,et al.Using generalised dissimilarity models and many small samples to improve the efficiency of regional and landscape scale invertebrate sampling.Ecological Informatics,2010,5:124-132
    [35]Myers MR,King GM.Isolation and characterization of Acidobacterium ailaaui sp.nov.,a novel member of Acidobacteria subdivision 1,from a geothermally heated Hawaiian microbial mat.International Journal of Systematic and Evolutionary Microbiology,2016,66:5328-5335
    [36]Pankratov TA,Dedysh SN.Granulicella paludicola gen.nov.,sp.nov.,Granulicella pectinivorans sp.nov.,Granulicella aggregans sp.nov.and Granulicella rosea sp.nov.,acidophilic,polymer-degrading acidobacteria from Sphagnum peat bogs.International Journal of Systematic and Evolutionary Microbiology,2010,60:2951-2959
    [37]Husson.Redox potential(Eh)and p H as drivers of soil/plant/microorganism systems:A transdisciplinary overview pointing to integrative opportunities for agronomy.Plant and Soil,2013,362:389-417
    [38]Wang X,Li H,Bezemer TM,et al.Drivers of bacterial beta diversity in two temperate forests.Ecological Research,2016,31:57-64
    [39]Shen C,Xiong J,Zhang H,et al.Soil p H drives the spatial distribution of bacterial communities along elevation on Changbai Mountain.Soil Biology and Biochemistry,2013,57:204-211
    [40]Erguder TH,Boon N,Wittebolle L,et al.Environmental factors shaping the ecological niches of ammoniaoxidizing archaea.FEMS Microbiology Reviews,2009,33:855-869
    [41]Sims A,Horton J,Gajaraj S,et al.Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands.Water Research,2012,46:4121-4129
    [42]Santoro AE,Francis CA,De Sieyes NR,et al.Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary.Environmental Microbiology,2008,10:1068-1079
    [43]Xie C-X(谢长校),Sun J-Z(孙建中),Li C-L(李成林),et al.Exploring the lignin degradation by bacteria.Microbiology China(微生物学通报),2015,42(6):1122-1132(in Chinese)
    [44]Liu G-F(刘国凡),Deng T-X(邓廷秀).A regression model of influence of soil condition on locust nitrogen fixation.Acta Pedologica Sinica(土壤学报),1991,28(4):439-446(in Chinese)
    [45]He D-H(何冬华),Shen Q-L(沈秋兰),Xu Q-F(徐秋芳),et al.Evolvement of structure and abundance of soil nitrogen-fixing bacterial community in phyllostachys edulis plantations with age of time.Acta Pedologica Sinica(土壤学报),2015,52(4):934-942(in Chinese)
    [46]Reed SC,Cleveland CC,Townsend AR.Relationships among phosphorus,molybdenum and free-living nitrogen fixation in tropical rain forests:Results from observational and experimental analyses.Biogeochemistry,2013,114:135-147
    [47]Zheng Y-P(郑亚萍),Zheng Y-M(郑永美),Sun K-X(孙奎香).Advanced on the effect of different nutrient elements on symbiotic nitrogen fixation potential.Chinese Agricultural Science Bulletin(中国农学通报),2011,27(5):49-52(in Chinese)
    [48]Stark JM,Firestone MK.Mechanisms for soil moisture effects on activity of nitrifying bacteria.Applied and Environmental Microbiology,1995,61:218-221
    [49]Ingwersen J,Butterbach-Bahl K,Gasche R,et al.Barometric process separation:New method for quantifying nitrification,denitrification,and nitrous oxide sources in soils.Soil Science Society of America Journal,1999,63:117-128
    [50]Schink B,Friedrich M.Phosphite oxidation by sulphate reduction.Nature,2000,406:37
    [51]Gao A-G(高爱国),Chen H-W(陈皓文),Sun H-Q(孙海青).Analysis on correlation between sulphatereducing bacteria and bio-geochemical factors of sediment in the Chukchi sea and Bering sea,Arctic.Acta Scientiae Circumstantiae(环境科学学报),2003,23(5):619-624(in Chinese)
    [52]Yuan H,Ge T,Wu X,et al.Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase(Rubis CO)large-subunit genes in paddy soil.Applied Microbiology and Biotechnology,2012,95:1061-1071
    [53]Sardans J,Pe1uelas J,Estiarte M.Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland.Plant and Soil,2006,289:227-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700