用户名: 密码: 验证码:
高轴压和围压共同作用下受频繁冲击时含铜蛇纹岩能量演化规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure
  • 作者:王春 ; 程露萍 ; 唐礼忠 ; 王文 ; 刘涛 ; 韦永恒
  • 英文作者:WANG Chun;CHENG Luping;TANG Lizhong;WANG Wen;LIU Tao;WEI Yongheng;School of Energy Science and Engineering,Henan Polytechnic University;School of Resources &Safety Engineering,Central South University;The Collaborative Innovation Center of Coal Safety Production of Henan;
  • 关键词:高轴压 ; 围压 ; 频繁冲击 ; 弹性能 ; 塑性能
  • 英文关键词:high axial compression;;confining pressure;;frequent impact;;elastic energy;;plastic energy
  • 中文刊名:爆炸与冲击
  • 英文刊名:Explosion and Shock Waves
  • 机构:河南理工大学能源科学与工程学院;中南大学资源与安全工程学院;煤炭安全生产河南省协同创新中心;
  • 出版日期:2018-10-19 09:30
  • 出版单位:爆炸与冲击
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金(51604093);; 河南省高校重点科研项目(18A440014);; 河南理工大学博士基金(672707);; 河南省重点研发与推广专项(科技攻关)项目(192102310247);; 深井瓦斯抽采与围岩控制技术国家地方联合工程实验室开放研究基金(SJF201803)
  • 语种:中文;
  • 页:55-68
  • 页数:14
  • CN:51-1148/O3
  • ISSN:1001-1455
  • 分类号:TU45
摘要
探讨高轴压和围压共同作用下频繁冲击扰动试验过程中伴随主要能量的种类,并推演冲击扰动前后弹性能、塑性能等能量的计算公式;采用预加载围压、高轴压、0.5 MPa冲击气压模拟深部岩体承受的水平应力、垂直高应力及爆破开挖扰动的影响开展动力学试验,并基于试验结果分析含铜蛇纹岩的动力学特征及能量演化规律。研究结果表明:含铜蛇纹岩能承受的扰动冲击次数随轴压增大而减小,随围压增大而增大,且动态峰值应力随扰动冲击次数增加而减小;随扰动冲击次数的增加,岩样伴随的弹性能先增大后趋于减小,伴随的塑性能呈增大的趋势发展,反射能和入射能的比值与透射能和入射能比值的变化规律相反,前者呈增大趋势,后者呈减小趋势;单位体积吸(释)能随扰动冲击次数的增加呈下凸曲线趋势变化,其均值随围压增大先减小后增大,随轴压增大而减小。
        Under the common action of high axial stress and confining pressure, the main types of energy were discussed in the study of frequent dynamic disturbance firstly. At the same time, the formula for calculating elastic energy, plastic energy are deduced before and after the impact disturbance. In order to conduct dynamic test, the horizontal stress, the vertical stress, the influence of blasting excavation disturbance of the deep rock mass were simulated by pre-confining pressure, pre-high axial stress, 0.5 MPa impact pressure, respectively. Based on the experimental results, the dynamic characteristics and energy evolution of the copper serpentine were analyzed. The results show that the cumulative disturbance impact times of copper snake-like rock decrease with the increase of axial pressure, while they increase with the increasing confining pressure, and the dynamic peak stress decreases with the increasing number of disturbances. As the number of disturbances increases, the elastic energy in the rock sample increases first and then decreases, the plastic energy shows a trend of increase, and the ratio of the reflection energy to the incident energy increases while the ratio of the transmission energy to incident energy decreases. The unit volume absorption(release) energy shows the trend of the lower convex curve with the number of disturbances increases. In addition, the averages of unit volume absorption(release) energy decreases first and then increases with the increasing confining pressure, but decreases with the increase of axial pressure.
引文
[1]尤业超,李二兵,谭跃虎,等.基于能量耗散原理的盐岩动力特性及破坏特征分析[J].岩石力学与工程学报,2017,36(4):843-851.DOI:10.13722/j.cnki.jrme.2016.0503.YOU Yechao,LI Erbing,TAN Yuehu,et al.Analysis on dynamic properties and failure characteristics of salt rock based on energy dissipation principle[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(4):843-851.DOI:10.13722/j.cnki.jrme.2016.0503.
    [2]张忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报(工程科学版),2008,40(2):26-31.DOI:10.15961/j.jsuese.2008.018.ZHANG Zhonghu,XIE Heping.Energy transfer and energy dissipation in rock deformation and fracture[J].Journal of Sichuan University(Engineering Science),2008,40(2):26-31.DOI:10.15961/j.jsuese.2008.018.
    [3]Liu X H,Dai F,Zhang R,et al.Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity[J].Environmental Earth Sciences,2015,73(10):5933-5949.DOI:10.1007/s12665-015-4106-3.
    [4]李明,茅献彪.冲击载荷作用下砂岩破坏及能量耗变率效应的数值模拟研究[J].爆破,2014,31(2):78-83.DOI:10.3963/j.issn.1001-487X.2014.02.017.LI Ming,MAO Xianbiao.Numerical simulation studies on strain rate effect of sandstone's energy dissipation and destruction under impulse loading[J].Blasting,2014,31(2):78-83.DOI:10.3963/j.issn.1001-487X.2014.02.017.
    [5]于水生,卢玉斌,朱万成,等.SHPB试验中花岗岩破坏程度与能量耗散关系分析[J].东北大学学报(自然科学版),2015,36(12):1733-1737.DOI:10.3969/j.issn.1005-3026.2015.12.014.YU Shuisheng,LU Yubin,ZHU Wancheng,et al.Analysis on relationship between degree of damage and energy dissipation of granite in SHPB tests[J].Journal of Northeastern University(Natural Science),2015,36(12):1733-1737.DOI:10.3969/j.issn.1005-3026.2015.12.014.
    [6]JU Yang,WANG Huijie,YANG Yongming,et al.Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses[J].Science China:Technological Sciences,2010,53(4):1098-1113.DOI:10.1007/s11431-010-0126-0.
    [7]黎立云,徐志强,谢和平,等.不同冲击速度下岩石破坏能量规律的实验研究[J].煤炭学报,2011,36(12):2007-2011.DOI:10.13225/j.cnki.jccs.2011.12.012.LI Liyun,XU Zhiqiang,XIE Heping,et al.Failure experimental study on energy laws of rock under differential dynamic impact velocities[J].Journal of China Coal Society,2011,36(12):2007-2011.DOI:10.13225/j.cnki.jccs.2011.12.012.
    [8]叶洲元,李夕兵,万国香,等.受三维静载压缩岩石对冲击能的吸收效应[J].爆炸与冲击,2009,29(4):419-424.DOI:10.11883/1001-1455(2009)04-0419-06.YE Zhouyuan,LI Xibing,WAN Guoxiang,et al.Impact energy-absorption property of rock under tri-axial compression[J].Explosion and Shock Waves,2009,29(4):419-424.DOI:10.11883/1001-1455(2009)04-0419-06.
    [9]许金余,刘石.SHPB试验中高温下岩石变形破坏过程的能耗规律分析[J].岩石力学与工程学报,2013,32(s2):3109-3115.XU Jin-yu,LIU Shi.Analysis of energy dissipation rule during deformation and fracture process of rock under high temperatures in SHPB test[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(s2):3109-3115.
    [10]徐小丽,高峰,周清,等.高温后岩石变形破坏过程的能量分析[J].武汉理工大学学报,2011,33(1):104-107.DOI:10.3963/j.issn.1671-4431.2011.01.023.XU Xiaoli,GAO Feng,ZHOU Qing,et al.Energy analysis of rock deformation and failure process after high temperature[J].Journal of Wuhan University of Technology,2011,33(1):104-107.DOI:10.3963/j.issn.1671-4431.2011.01.023.
    [11]尹土兵,李夕兵,叶洲元,等.温-压耦合及动力扰动下岩石破碎的能量耗散[J].岩石力学与工程学报,2013,32(6):1197-1202.YIN Tubing,LI Xibing,YE Zhouyuan,et al.Energy dissipation of rock fracture under thermo-mechanical coupling and dynamic disturbances s[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1197-1202.
    [12]李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学与工程学报,2005,24(16):2814-2824.DOI:10.3321/j.issn:1000-6915.2005.16.002.LI Xibing,ZUO Yujun,MA Chunde.Failure criterion of strain energy density and catastrophe theory analysis of rock subjected to static-dynamic coupling loading[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2814-2824.DOI:10.3321/j.issn:1000-6915.2005.16.002.
    [13]金解放,李夕兵,殷志强,等.轴压和围压对循环冲击下砂岩能量耗散的影响[J].岩土力学,2013,34(11):3096-3102.DOI:10.16285/j.rsm.2013.11.007.JIN Jiefang,LI Xibing,YIN Zhiqiang,et al.Effects of axial compression and confining pressure on energy dissipation of sandstone under cyclic impact loads[J].Rock and Soil Mechanics,2013,34(11):3096-3102.DOI:10.16285/j.rsm.2013.11.007.
    [14]赵伏军,王宏宇,彭云,等.动静组合载荷破岩声发射能量与破岩效果试验研究[J].岩石力学与工程学报,2012,31(7):1363-1368.DOI:10.3969/j.issn.1000-6915.2012.07.008.ZHAO Fujun,WANG Hongyu,PENG Yun,et al.Experimental research on acoustic emission energy and rock crushing effect under static-dynamic coupling loading[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(7):1363-1368.DOI:10.3969/j.issn.1000-6915.2012.07.008.
    [15]刘少虹,毛德兵,齐庆新,等.动静加载下组合煤岩的应力波传播机制与能量耗散[J].煤炭学报,2014,39(S1):15-11.DOI:10.13225/j.cnki.jccs.2013.0411.LIU Shaohong,MAO Debing,QI Qingxin,et al.Under static loading stress wave propagation mechanism and energy dissipation in compound coal-rock[J].Journal of China Coal Society,2014,39(S1):15-11.DOI:10.13225/j.cnki.jccs.2013.0411.
    [16]王文,李化敏,顾合龙,等.动静组合加载含水煤样能量耗散特征分析[J].岩石力学与工程学报,2015,34(S2):3965-3971.DOI:10.13722/j.cnki.jrme.2015.0546.WANG Wen,LI Huamin,GU Helong,et al.Feature analysis of energy dissipation of water-saturated coal samples under coupled static-dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(S2):3965-3971.DOI:10.13722/j.cnki.jrme.2015.0546.
    [17]LI X,ZHOU Z,ZHAO Y.Approach to minish scattering of results for split Hopkinson pressure bar test[J].Journal of Central South University of Technology,2007,14(3):404-407.DOI:10.1007/s11771-007-0079-z.
    [18]李夕兵,周子龙,王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学报,2005,24(23):4215-4218.DOI:10.3321/j.issn:1000-6915.2005.23.003.LI Xibing,ZHOU Zilong,WANG Weihua.Construction of ideal striker for SHPB device based on FEM and neural network[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(23):4215-4218.DOI:10.3321/j.issn:1000-6915.2005.23.003.
    [19]Li X B,Zhou Z L,Lok T S,et al.Innovative testing technique of rock subjected to coupled static and dynamic loads[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(5):739-748.DOI:10.1016/j.ijrmms.2007.08.013.
    [20]宫凤强,李夕兵,刘希灵.三维动静组合加载下岩石力学特性试验初探[J].岩石力学与工程学报,2011,30(6):1178-1190.GONG Fengqiang,LI Xibing,LIU Xiling.Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1178-1190.
    [21]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994:16-20.
    [22]武建力.冬瓜山铜矿频繁爆破开采围岩变形与破坏机理研究[D].长沙:中南大学,2014:31-42.
    [23]单仁亮.岩石冲击破坏力学模型及其随机性研究[D].北京:中国矿业大学,1997:67-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700