用户名: 密码: 验证码:
不同林龄杉木人工林土壤C∶N∶P化学计量特征及其与土壤理化性质的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil C∶N∶P stoichiometry and its relationship with the soil physicochemical properties of different aged Chinese fir (Cunninghamia lanceolata) plantations
  • 作者:张芸 ; 李惠通 ; 张辉 ; 黄彬彬 ; 刘春华 ; 蒋宗垲 ; 马祥庆
  • 英文作者:ZHANG Yun;LI Huitong;ZHANG Hui;HUANG Binbin;LIU Chunhua;JIANG Zongkai;MA Xiangqing;College of Forestry, Fujian Agriculture and Forestry University;College of Natural Resources and Environment, Northwest Agriculture and Forestry University;Xinkou Experimental Forest Farm, Fujian Agriculture and Forestry University;
  • 关键词:杉木 ; 发育阶段 ; 养分循环 ; 养分限制
  • 英文关键词:Chinese fir;;development stage;;nutrients cycling;;nutrients limitation
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建农林大学林学院;西北农林科技大学资源环境学院;福建农林大学莘口教学林场;
  • 出版日期:2019-01-10 09:10
  • 出版单位:生态学报
  • 年:2019
  • 期:07
  • 基金:国家重点研发计划(2016YFD0600301);; 福建农林大学科技创新专项基金项目(CXZX2016059);福建农林大学林学院林学高峰学科建设经费
  • 语种:中文;
  • 页:258-269
  • 页数:12
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S714
摘要
为了阐明林龄对杉木人工林土壤理化性质及碳氮磷(C∶N∶P)生态化学计量特征的影响,在福建农林大学三明莘口林场选取4个林龄(4, 20, 24, 33a)的杉木人工林为研究对象,测定0—20,20—40,40—60 cm深度土壤的水分-物理性质、pH、总碳(TC)、全氮(TN)、全磷(TP)、全钾(TK),探讨它们随林龄的变化及其与C∶N∶P化学计量比之间的关系,为杉木人工林持续经营管理提供科学依据。结果表明:(1)随着林龄的增加,质量含水量、田间持水量和毛管孔隙度先减小后增加,在20 a达到最小,TN和TP也有相似的变化趋势,但在24 a林分的深层土壤达到最小,TC和TK保持不变;(2)随着林龄的增加,C∶N保持不变,C∶P和N∶P在24 a成熟林达到最大,但只在20—60 cm达到显著差异;(3)TC与多数水分-物理性质及3个生态化学计量比显著相关,质量含水量和孔隙度与C∶N∶P生态化学计量比均显著相关,TP与C∶P和N∶P显著负相关。土壤物理性质与土壤养分循环存在一定关联,有机质与土壤结构及养分平衡的调节有关,研究区杉木林发育过程中土壤腐殖质化进程较缓慢,24 a成熟林杉木的生长受到土壤磷的限制,在杉木速生阶段适当增施磷肥,保证林木的良好生长,促进土壤与植物的良性养分循环。
        To investigate the effect of stand age on soil physicochemical properties and C∶N∶P stoichiometry in Cunninghamia lanceolata plantations, an age sequence of Cunninghamia lanceolata stands(4 years old, 20 years old, 24 years old, and 33 years old) were selected in the Xinkou Experimental Forestry Centre of Fujian Agricultural and Forestry University, Sanming, Fujian. Soil water content, porosity, pH, total carbon(TC), total nitrogen(TN), total phosphorus(TP), total potassium(TK), and soil C∶N∶P stoichiometry at soil depths of 0—20, 20—40, 40—60 cm were measured during stand development. The results showed that the soil gravimetric water content, water field capacity, and capillary porosity were lowest at 20 years old, and then increased thereafter. There was a similar trend in changes of TN and TP, which had the lowest values in deep soil of the 24 year old stand. Stand age did not significantly affect TC, TK, or C∶N. C∶P and N∶P were higher in the 24 year old mature stand; however, significant differences were only detected at soil depths of 20—60 cm. The majority of soil physicochemical variables showed significantly correlations with TC. Gravimetric water content and capillary porosity showed significant correlations with C∶N, C∶P, and N∶P. TP correlated negatively with C∶P and N∶P, indicating a firm linkage between soil physical properties and nutrient cycling in Chinese fir plantations. The regulation of soil structure and nutrient balance may be influenced by soil organic matter. Humification in our study area was slow during the development of Cunninghamia lanceolata plantations. The growth of the 24-year-old mature stand was limited by soil phosphorus. Therefore, P fertilization during the rapid growth period of Cunninghamia lanceolata may be important to sustain the growth of Cunninghamia lanceolata and to improve nutrient cycling between plant and soil.
引文
[1] Elser J J,Fagan W F,Denno R F,Dobberfuhl D R,Folarin A,Huberty A,Interlandi S,Kilham S S,McCauley E,Schulz K L,Siemann E H,Sterner R W.Nutritional constraints in terrestrial and freshwater food webs.Nature,2000,408(6812):578- 580.
    [2] McGroddy M E,Daufresne T,Hedin L O.Scaling of C∶N∶P stoichiometry in forests worldwide:implications of terrestrial redfield-type ratios.Ecology,2004,85(9):2390- 2401.
    [3] 王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征.生态学报,2008,28(8):3937- 3947.
    [4] Bui E N,Henderson B L.C∶N∶P stoichiometry in Australian soils with respect to vegetation and environmental factors.Plant and Soil,2013,373(1/2):553- 568.
    [5] 吕金林,闫美杰,宋变兰,关晋宏,时伟宇,杜盛.黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征.生态学报,2017,37(10):3385- 3393.
    [6] 张珂,苏永中,王婷,刘婷娜.荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征.生态学报,2016,36(11):3235- 3243.
    [7] Lucas-Borja M E,Hedo J,Cerdá A,Candel-Pérez D,Viňegla B.Unravelling the importance of forest age stand and forest structure driving microbiological soil properties,enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar.ssp.salzmannii) Forest.Science of The Total Environment,2016,562:145- 154.
    [8] 任璐璐,张炳学,韩凤朋,张兴昌.黄土高原不同年限刺槐土壤化学计量特征分析.水土保持学报,2017,31(2):339- 344.
    [9] 姜沛沛,曹扬,陈云明,王芳.不同林龄油松(Pinus tabulaeformis)人工林植物、凋落物与土壤C、N、P化学计量特征.生态学报,2016,36(19):6188- 6197.
    [10] 胡启武,聂兰琴,郑艳明,吴琴,尧波,郑林.沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响.生态学报,2014,34(9):2246- 2255.
    [11] 程滨,赵永军,张文广,安树青.生态化学计量学研究进展.生态学报,2010,30(6):1628- 1637.
    [12] 国家林业局.中国森林资源报告:第七次全国森林资源清查.北京:中国林业出版社,2009.
    [13] 郭虎波,吴建平,袁颖红,刘文飞,樊后保,许鲁平,张子文,孟庆银.氮沉降对杉木人工林土壤化学计量特征的影响.福建林业科技,2014,41(1):1- 5.
    [14] 陈婵,王光军,赵月,周国新,李栎,高吉权.会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系.生态学报,2016,36(23):7614- 7623.
    [15] 邱岭军,胡欢甜,林宝平,汪凤林,林宇,何宗明,刘桌明.不同林龄杉木养分重吸收率及其C∶N∶P化学计量特征.西北林学院学报,2017,32(4):22- 27.
    [16] 王艳,胡小飞,王方超,张宇飞,陈少凤.施氮磷肥对杉木人工林3种林下植物养分动态及化学计量比的影响.江西农业大学学报,2016,38(2):304- 311.
    [17] 曹娟,闫文德,项文化,谌小勇,雷丕锋.湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征.林业科学,2015,51(7):1- 8.
    [18] 俞新妥.杉木栽培学.福州:福建科学技术出版社,1997:155- 157.
    [19] 国家林业局.中华人民共和国林业行业标准:森林土壤分析方法.北京:中国标准出版社,1999:21- 151.
    [20] 曾伟生.我国杉木通用性立木生物量模型研究.中南林业调查规划,2013,32(4):4- 11,15- 15.
    [21] 王宏星,孙晓梅,陈东升,沈亚洲,马建伟.甘肃小陇山日本落叶松人工林不同发育阶段土壤理化性质的变化.林业科学研究,2012,25(3):294- 301.
    [22] 牛沙沙,周永斌,刘丽颖,秦胜金,殷有,宋晓东,肖薇.不同林龄樟子松人工林土壤理化性质.东北林业大学学报,2015,43(2):47- 50,62- 62.
    [23] 李小容,白礼姣,陈本莉,蓝慧卡,符春丁,李蕾.不同林龄木麻黄林地土壤理化性质与生化活性分析.西北林学院学报,2014,29(2):37- 41.
    [24] 马祥庆,何智英,俞新妥.不同林地清理方式对杉木人工林地力的影响.林业科学,1995,31(6):485- 490.
    [25] 马祥庆,刘爱琴,何智英,俞立烜,林景露.整地方式对杉木人工林生态系统的影响.山地学报,2000,18(3):237- 243.
    [26] 焦如珍,杨承栋,屠星南,盛炜彤.杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化.林业科学研究,1997,10(4):373- 379.
    [27] Chen G S,Yang Z J,Gao R,Xie J S,Guo J F,Huang Z Q,Yang Y S.Carbon storage in a chronosequence of Chinese fir plantations in southern China.Forest Ecology and Management,2013,300:68- 76.
    [28] 兰斯安,杜虎,曾馥平,宋同清,彭晚霞,韩畅,陈莉,苏樑.不同林龄杉木人工林碳储量及其分配格局.应用生态学报,2016,27(4):1125- 1134.
    [29] 王丹,王兵,戴伟,李萍,胡文,郭浩.不同发育阶段杉木林土壤有机碳变化特征及影响因素.林业科学研究,2009,22(5):667- 671.
    [30] Yang Y H,Luo Y Q,Finzi A C.Carbon and nitrogen dynamics during forest stand development:a global synthesis.New Phytologist,2011,190(4):977- 989.
    [31] Shen Y H.Sorption of natural dissolved organic matter on soil.Chemosphere,1999,38(7):1505- 1515.
    [32] Luo Y Q,Field C B,Jackson R B.Does nitrogen constrain carbon cycling,or does carbon input stimulate nitrogen cycling?Ecology,2006,87(1):3- 4.
    [33] Ma X Q,Heal K V,Liu A Q,Jarvis P G.Nutrient cycling and distribution in different-aged plantations of Chinese fir in southern China.Forest Ecology and Management,2007,243(1):61- 74.
    [34] Zhou L L,Shalom A D D,Wu P F,Li S B,Jia Y Y,Ma X Q.Litterfall production and nutrient return in different-aged Chinese fir (Cunninghamia lanceolata) plantations in South China.Journal of Forestry Research,2015,26(1):79- 89.
    [35] 张洋,刘华,王得祥,王宇超,吴昊,张丽楠,黄青平.商洛地区不同林龄油松人工林土壤理化性质研究.水土保持研究,2012,19(3):82- 85,89- 89.
    [36] Zhou L L,Addo-Danso S D,Wu P F,Li S B,Zou X H,Zhang Y,Ma X Q.Leaf resorption efficiency in relation to foliar and soil nutrient concentrations and stoichiometry of Cunninghamia lanceolata with stand development in southern China.Journal of Soils and Sediments,2016,16(5):1448- 1459.
    [37] Wang W J,Wang H M,Zu Y G.Temporal changes in SOM,N,P,K,and their stoichiometric ratios during reforestation in China and interactions with soil depths:Importance of deep-layer soil and management implications.Forest Ecology and Management,2014,325:8- 17.
    [38] Jobbágy E G,Jackson R B.The uplift of soil nutrients by plants:biogeochemical consequences across scales.Ecology,2004,85(9):2380- 2389.
    [39] Tian H Q,Chen G S,Zhang C,Melillo J M,Hall C A S.Pattern and variation of C∶N∶P ratios in China′s soils:a synthesis of observational data.Biogeochemistry,2010,98(1/3):139- 151.
    [40] 赵月,王光军,陈婵,陈安娜,李瑾.杉木不同器官与土壤的N∶P生态化学计量相关性.中南林业科技大学学报,2016,36(11):73- 79.
    [41] 高吉权,周国新,王光军,李栎,赵月.杉木林凋落物与土壤C∶N∶P生态化学计量学的相关关系.湖南林业科技,2016,43(4):1- 6.
    [42] Paul K I,Polglase P J,Nyakuengama J G,Khanna P K.Change in soil carbon following afforestation.Forest Ecology and Management,2002,168(1/3):241- 257.
    [43] Cleveland C C,Liptzin D.C∶N∶P stoichiometry in soil:is there a “Redfield ratio” for the microbial biomass?.Biogeochemistry,2007,85(3):235- 252.
    [44] Yang Y H,Fang J Y,Guo D L,Ji C J,Ma W H.Vertical patterns of soil carbon,nitrogen and carbon:nitrogen stoichiometry in Tibetan grasslands.Biogeosciences Discuss,2010,7(1):1- 24.
    [45] Huang W J,Liu J X,Wang Y P,Zhou G Y,Han T F,Li Y.Increasing phosphorus limitation along three successional forests in southern China.Plant and Soil,2013,364(1/2):181- 191.
    [46] Fan H B,Wu J P,Liu W F,Yuan Y H,Hu L,Cai Q K.Linkages of plant and soil C∶N∶P stoichiometry and their relationships to forest growth in subtropical plantations.Plant and Soil,2015,392(1/2):127- 138.
    [47] Elser J J,Fagan W F,Kerkhoff A J,Swenson N G,Enquist B J.Biological stoichiometry of plant production:metabolism,scaling and ecological response to global change.New Phytologist,2010,186(3):593- 608.
    [48] Wright I J,Westoby M.Nutrient concentration,resorption and lifespan:leaf traits of Australian sclerophyll species.Functional Ecology,2003,17(1):10- 19.
    [49] Yan Z B,Kim N,Han W X,Guo Y L,Han T S,Du E Z,Fang J Y.Effects of nitrogen and phosphorus supply on growth rate,leaf stoichiometry,and nutrient resorption of Arabidopsis thaliana.Plant and Soil,2015,388(1/2):147- 155.
    [50] Niklas K J,Owens T,Reich P B,Cobb E D.Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth.Ecology Letters,2005,8(6):636- 642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700