用户名: 密码: 验证码:
青藏高原臭氧低值中心特征及成因分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and Causes of the Ozone Low Value Center over the Tibetan Plateau
  • 作者:王秀英 ; 田孟坤 ; 陈艳 ; 郭世昌
  • 英文作者:WANG Xiuying;TIAN Mengkun;CHEN Yan;GUO Shichang;Puer Meteorological Administration;Department of Atmospheric Sciences, Yunnan University;Yunnan Meteorological Administration;
  • 关键词:青藏高原 ; 对流层 ; 臭氧低值 ; 后向轨迹 ; 静力亏损
  • 英文关键词:Tibetan Plateau;;troposphere;;ozone low value center;;backward trajectory method;;static depletion
  • 中文刊名:三峡生态环境监测
  • 英文刊名:Ecology and Environmental Monitoring of Three Gorges
  • 机构:普洱市气象局;云南大学大气科学系;云南省气象局;
  • 出版日期:2019-03-05
  • 出版单位:三峡生态环境监测
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(41275072,41365007);; 云南省应用基础研究计划(重点)项目(2011FA031)
  • 语种:中文;
  • 页:50-58
  • 页数:9
  • CN:50-1214/X
  • ISSN:2096-2347
  • 分类号:X513
摘要
使用欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts,ECMWF)臭氧与风场资料,采用后向轨迹模型对青藏高原区域对流层3个层次(450 hPa,250 hPa,150 hPa)进行模拟分析。结果显示:(1)青藏高原常年存在臭氧低值区,第一类出现在5~11月,臭氧低值中心显著;第二类出现在12月至次年4月,为浅薄的臭氧低谷,臭氧低值区范围与青藏高原海拔超过3 km地形相对应。(2)水平方向上青藏高原低层450 hPa气流源地主要为高原西侧同纬度地区,250 hPa主要来源为高原西侧及南侧地区,150 hPa主要来源为高原南侧;垂直方向上,青藏高原气流存在显著抬升。(3)受低纬度低层气流对臭氧浓度输送及高山地形的推挤和强迫抬升影响,青藏高原较同纬度其他地区臭氧浓度低,臭氧柱缩短,青藏高原臭氧出现静力亏损,为青藏高原臭氧低值区形成的重要原因。
        Based on the ozone mass mixing ratio and wind field data of the European Center for Medium-Range Weather Forecasts(ECMWF)data during 1984—2013,by using the tropospheric backward trajectory method,this paper has studied the characteristics and causes of the ozone low value center over the Tibetan Plateau.The analysis results of trajectories at different levels indicate that:(1)The ozone low value center over the Tibetan Plateau exists during a course of year,and can be divided into two types:one is significant low center appearing during May to November,and another is shallow trough of low ozone during December to April of the next year.The range of the ozone low value center almost coincides with that of the plateau terrain whose altitudes are over 3 km above sea level.(2)In the horizontal direction,the source areas of air current transporting to the Tibetan plateau are located in its west at 450 hPa,its west and south at 250 hPa,and its south at 150 hPa.In the vertical direction,the main feature of the air current over the Tibetan Plateau is the ascending motion.(3)The ozone concentration over the Tibetan Plateau is lower than that in other areas at the same latitude,because of the advection of the low layers air current coming from the low latitude and the orographic uplift and jostle effect.The main cause of the ozone low value center over the Tibetan Plateau is static depletion.
引文
[1]李崇银.气候动力学引论[M].2版.气象出版社,2000.
    [2]邹捍,郜永祺,周立波.大尺度山地上空的臭氧低值及地面加热[J].气候与环境研究,1998,3(3):209-217.
    [3] WEI D, WEN C. Observations and analyses of the totalamount of atmospheric ozone in the Beijing region and inthe region of Jolmolungma Mountain in Tibet[J].UniversitasPsychologica,1981,11(2):469-480.
    [4]周秀骥,罗超,李维亮,等.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报,1995,40(15):1396-1398.
    [5]付超,李维亮.夏季青藏高原上空臭氧总量低值区形成的模拟试验[C]//中国气象学会.中国地区大气臭氧变化及其对气候环境的影响论文集,北京:[出版者不祥],1997:274-284.
    [6] REITER E R, GAO D Y. Heating of the Tibet Plateau andmovements of the South Asian high during spring[J].Month?ly Weather Review,1982,110(11):1694-1711.
    [7]周秀骥,李维亮,陈隆勋,等.青藏高原地区大气臭氧变化的研究[J].气象学报,2004,62(5):513-527.
    [8]周任君,陈月娟.青藏高原和伊朗高原上空臭氧变化特征及其与南亚高压的关系[J].中国科学技术大学学报,2005,35(6):899-908.
    [9]徐祥德,陈联寿.青藏高原大气科学试验研究进展[J].应用气象学报,2006,17(6):756-772.
    [10]季崇萍,邹捍,周立波.青藏高原臭氧的准两年振荡[J].气候与环境研究,2001,6(4):416-424.
    [11]仇永炎,魏民,江爱良,等.青藏高原臭氧总量低中心与落基山臭氧低槽的基本特征——兼论高山静力亏损的成因[J].气候与环境研究,2008,13(5):617-628.
    [12]仕仁睿,周顺武,孙绩华,等.青藏高原臭氧亏损变化及其对太阳活动的响应[J].云南大学学报(自然科学版),2017,1(39):78-87.
    [13]刘煜,郭彩丽,李维亮,等.青藏高原平流层臭氧和气溶胶的变化趋势研究[J].气象学报,2007,65(6):938-945.
    [14]李庆,陈月娟,施春华,等.青藏高原上空氮氧化物的分布特征及其与臭氧的关系[J].高原气象,2005,24(6):935-940.
    [15]焦铂洋,苏昱丞,郭胜利,等.青藏高原臭氧谷的分布及其与太阳辐射的关系[J].高原气象,2017,36(5):1201-1208.
    [16]万凌峰,郭栋,刘仁强,等.WACCM3对夏季青藏高原臭氧谷双心结构的模拟性能评估[J].高原气象,2017,36(1):57-66.
    [17]郭世昌,高丽娜,李琼,等.东亚和西太平洋地区Hadley环流对对流层臭氧分布的影响[J].云南大学学报(自然科学版),2012,34(6):689-694.
    [18]郑光,吴统文,贺慧霞,等.北半球臭氧总量与平流层环流关系的分析[J].高原气象,1991,10(3):277-286.
    [19]杨健,吕达仁.东亚地区平流层、对流层交换对臭氧分布影响的模拟研究[J].大气科学,2004,28(4):579-588.
    [20]郭世昌,戴敏,李琼,等.冬季Hadley环流活动与大气臭氧变化的关系研究[J].云南大学学报(自然科学版),2008,30(2):148-154.
    [21]刘毅,刘小红,李家伦,等.冷锋天气大气边界层内臭氧及氮氧化物的观测研究[J].大气科学,2000,24(2):165-172.
    [22]陈文,黄荣辉.中层大气行星波在臭氧的季节和年际变化中输运作用的数值研究:Ⅰ.常定流的情况[J].大气科学,1996,20(5):513-523.
    [23]陈旭,安俊琳,刘世玺.气流输送对北京大气污染物体积分数的影响[J].南京信息工程大学学报(自然科学版),2012,4(1):47-56.
    [24]李燕军.兰州市区和郊区黑碳浓度特征及其来源分析[D].兰州:兰州大学,2014.
    [25]颜鹏,房秀梅,李兴生,等.临安地区地面SO2变化规律及其源地分析[J].应用气象学报,1999,10(3):267-275.
    [26]易香妤,郭世昌,刘二影,等.西南地区不同类型风场与对流层臭氧分布变化的关系[J].三峡生态环境监测,2017,2(4):25-33.
    [27] DRAXLER R, ROLPH G. HYSPLIT(HYbrid Single-Par?ticle Lagrangian Integrated Trajectory)model access viaNOAA ARL READY[EB/OL].http://www.arl.noaa.gov/ready/hysplit4.html,2013.
    [28] ROLPH G, STEIN A, STUNDER B. Real-time environ?mental applications and display system:READY[J].Envi?ronmental Modelling&Software,2017,95:210-228.
    [29] BRANKOV E, RAOA S T, PORTERA P S. A trajectory-clustering-correlation methodology for examining thelong-range transport of air pollutants[J].Atmospheric Envi?ronment,1998,32(9):1525-1534.
    [30] DORLING S R, DAVIES T D, PIERCE C E. Cluster anal?ysis:A technique for estimating the synoptic meteorologicalcontrols on air and precipitation chemistry—Method andapplications[J]. Atmospheric Environment. part A. generalTopics,1992,26(14):2575-2581.
    [31]沈凡卉,王体健,沈毅,等.中国近30 a臭氧气候场特征[J].大气科学学报,2011,34(3):288-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700