用户名: 密码: 验证码:
凯德隆电站取水泵房沉井结构有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural analysis for the caisson of the pump room of Kidurong Power Plant based on finite element method
  • 作者:牛建东 ; 冉凯 ; 周小林 ; 张飞 ; 尚恒 ; 冯楚
  • 英文作者:NIU Jiandong;RAN Kai;ZHOU Xiaolin;ZHANG Fei;SHANG Heng;FENG Chu;School of Civil Engineering,Central South University;SinoHydro Bureau 8 Co., Ltd.;
  • 关键词:沉井 ; MIDAS ; GTS有限元 ; 结构分析
  • 英文关键词:caisson;;MIDAS GTS nx;;structural analysis
  • 中文刊名:水利水电技术
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:中南大学;中国水利水电第八工程局有限公司;
  • 出版日期:2019-06-24 10:44
  • 出版单位:水利水电技术
  • 年:2019
  • 期:09
  • 基金:湖南省水利科技项目(XSKJ2018179-40)
  • 语种:中文;
  • 页:92-100
  • 页数:9
  • CN:11-1757/TV
  • ISSN:1000-0860
  • 分类号:TV551
摘要
凯德隆电站取水泵房采用沉井结构,原设计综合考虑外部荷载及后期顶管作业的便利,提出了三个结构布置方案以供选择,分别为整体浇筑方案、预留二期混凝土方案和预留二期混凝土加支撑方案中,后两者是在整体浇筑方案的基础上增加二期混凝土部位或钢管支撑所得。三个方案的结构受力体系有较大差异,以传统的平面分析方法难以进行计算。基于大型有限元软件Midas GTS nx分别建立了三个方案对应的三维沉井结构模型,采用结构-荷载法分析了各方案下沉井主要构件的受力情况,并进行了承载力和抗裂验算。结果表明:在预留二期混凝土方案以及预留二期混凝土加支撑方案中,沉井外壁的最大弯矩较整体浇筑方案分别增长了23.33%、22.19%;第二道中隔墙最大弯矩增长了79.05%、68.39%;第一道胸墙的最大弯矩增长了65.95%、57.66%。此二者不能保证沉井结构的承载力以及抗裂要求,故最终建议采用整体浇筑方案。
        The pump room of Kidurong Power Plant was designed with caisson structure.Considering the external load and the convenience for pipe jacking operation in the later stage, three structural layout schemes were put forward, which were as follows: integral cocrete pouring scheme, two-step concrete pouring scheme and its brace were reserved. The latter two were obtained by adding the second-step concrete or steel tube brace on the basis of the integral concrete pouring scheme. The mechanical systems of the three schemes are quite different, and it is difficult to calculate by traditional plane analysis method. In this paper, based on large-scale finite element software Midas GTS nx, three-dimensional caisson structure models corresponding to the three schemes were established respectively. The structure-load method was used to analyze the force of the main components of the caisson under each scheme, and the bearing capacity and anti-cracking calculation were carried out. It was found that the maximum bending moment of the outer wall under the two-step concrete pouring scheme and its brace was 23.33% and 22.19% higher than that of the integral pouring scheme respectively. The maximum bending moment of the second partition wall increased by 79.05%, 68.39%, and the maximum bending moment of the first chest wall increased by 65.95%, 57.66%. These two schemes can not guarantee the bearing capacity and crack resistance of caisson structure, so it was suggested that the integral pouring scheme should be adopted.
引文
[1] 上海市政工程设计研究院.给水排水工程结构设计手册[M].北京:中国建筑工业出版社,1984.
    [2] 顾晓鲁,钱鸿给,刘惠珊,等.地基与基础[M].北京:中国建筑工业出版社,2003.
    [3] 段良策,殷奇.沉井设计与施工[M].上海:同济大学出版社,2006.
    [4] 中国工程建设协会.给水排水工程钢筋混凝土沉井结构设计规程:CECS137:2015 [S].北京:中国计划出版社,2015.
    [5] 中华人民共和国交通部.公路桥涵地基与基础设计规范:JTG D63—2007[S].北京:人民交通出版社,2007.
    [6] 黄建武.深厚软土地基大型双沉井结构设计及施工控制[D].杭州:浙江大学,2013.
    [7] 杨金虎等.矩形沉降开洞受力分析对比[J].湖北电力,2011,35(2):47- 49.
    [8] 孙力,刘飞,吕凤梧.沉井结构施工过程数值模拟及参数分析[J].山西建筑,2008,34(33):21- 23.
    [9] JIANG B N.The influence of soil surrounding the caisson cutting edge to excavation and sinking[C]// MA J L,CHU J L.Geotechnical and Seismic Research and Practices for Sustainability:IACGE 2018.Chongqing:ASCE,2018:435- 448.
    [10] 邓友生,万昌中,闫卫玲,等.大型圆形沉井结构应力及其周边沉降计算[J].岩土力学,2015,36(2):502- 508.
    [11] 刘青.沉井结构侧壁土压力分布研究[D].西安:西安建筑科技大学,2010.
    [12] 丁志全,刘树明.Midas 在沉井设计中的应用[J].施工技术,2010,39(S1):692- 693.
    [13] 林祯杉.SAP2000 在福州某沉井设计中的应用[J].福建建筑,2018(10):114- 117.
    [14] 朱晓文,赵启林,朱凯,等.润扬大桥北锚碇基础三维数值仿真分析[J].东南大学学报(自然科学版),2005,35(2):293- 297.
    [15] 汪海滨,高波,朱栓来,等.四渡河特大桥隧道式锚碇数值模拟[J].中国公路学报,2006,19(6):73- 78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700