用户名: 密码: 验证码:
城市地下不规则采空区的超载破坏模型试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Overburden destruction model test of irregularly shaped gob in city underground
  • 作者:李东阳 ; 王杰 ; 杨韶珺 ; 王波 ; 张垒志
  • 英文作者:LI Dongyang;WANG Jie;YANG Shaojun;WANG Bo;ZHANG Leizhi;School of Mechanics and Civil Engineering,China University of Mining and Technology(Beijing);
  • 关键词:采空区 ; 地质力学模型 ; 地质灾害 ; 超载破坏 ; 稳定性评价
  • 英文关键词:gob;;geomechanical model;;geological disaster;;overload damage;;stability evaluation
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)力学与建筑工程学院;
  • 出版日期:2019-07-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:07
  • 基金:国家重点研发计划资助项目(2016YFC080250000);; 国家自然科学基金资助项目(41771083,41472259)
  • 语种:中文;
  • 页:199-206
  • 页数:8
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD325.3
摘要
为研究某城市地下小型采空区的岩层稳定性,采用三维相似模型方法,对城市潜在地质灾害问题进行了超载破坏试验研究。根据相似模拟理论,以中粗河砂为骨料配置了相似材料,采用砌筑法建立了相似模型。对岩层进行逐级竖向加载至破坏,同时监测了地表位移、矿柱和岩层顶板的应变变化,并采用内窥镜拍摄了顶板和矿柱的破坏演变过程。计算分析了岩层表面的位移、曲率变形、顶板的应变,及矿柱的破坏随荷载增加的变化曲线。综合几个方面来分析岩层的稳定性。试验结果表明:①岩层表面荷载小于2 MPa时,岩层表面变形很小,属于稳定状态;2 MPa后岩层变形呈随荷载迅速增大的状态,并表现出明显的不均匀变形特征。②岩层表面荷载不超过1.2 MPa时,顶板应变处于线性小变形阶段,属于稳定阶段;而后顶板应变随岩层表面荷载迅速增加,当荷载增大到5 MPa时,应变曲线上出现明显的拐点,顶板开始出现破坏现象。③根据影像记录,顶板先于矿柱出现受拉裂缝破坏,而后矿柱出现剪切破坏现象。因此,未来的破坏模式必将是顶板先于矿柱出现拉裂缝破坏现象,所以要从防止顶板拉裂的角度来控制岩层的稳定性。综上所述,最终确定岩层表面瞬时荷载为1.2 MPa,并且在未来的开发设计中,应充分考虑该区域岩层因存在地下不规则采空区而导致的不均匀变形问题。
        In order to test the stability of rock formations in underground mined-out areas under a city,a three-dimensional geomechanical modeling was carried out to test the potential destruction of the potential geo-logical hazards in a city.According to the similar simulation theory,a similar material was configured with medi-um-rough river sand as aggregate,and a similar model was established using the masonry method.The rock strata was gradually loaded until the model damage,and the surface displacements,changes in the strain of the pillars and the roof of the rock were monitored,and the destruction and evolution of the roof and pillars were photographed by endoscopes.The relationship between the displacement of the rock surface,the curvature deformation,the strain in the roof and pillars,and the increasingly load were calculated.The stability of the rock formation was comprehensive analyzed in several aspects.According to the test results,when the rock surface load is less than 2 MPa,the rock surface deformation is very small,and the deformation rapidly increases after 2 MPa,and it shows obvious non-uniform deformation characteristics.When the rock surface load does not exceed 1.2 MPa,the roof strain is in a small linear deformation stage.When the local surface load increases to 5 MPa,a sharp inflection point appears on the strain curve,and the roof plate begins to fail.According to the image records,the roof plate was damaged by tensile cracks before the pillars,and pillars appeared cracking.Therefore,the future failure mode will definitely be that the roof is damaged before the cracks occur in pillars.Therefore,the stability of the rock formation could be controlled by preventing the roof from cracking.In summary,the transient load on the surface of the rock formation is finally determined to be 1.2 MPa.In future development and design,the problem of uneven deformation caused by the existence of underground irregular goaf in rock formations in this area should be fully considered.
引文
[1] 杨金旺,陈媛,张林,等.基于地质力学模型试验综合法的顺层岩质高边坡稳定性研究[J].岩石力学与工程学报,2018,37(1):131-140.YANG Jinwang,CHEN Yuan,ZHANG Lin,et al.Stability of high bedding slope of rock based on comprehensive geo-mechanical model test[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(1):131-140.
    [2] 唐茂颖,段斌,张林,等.深厚覆盖层上的高闸坝整体稳定地质力学模型试验研究[J].水力发电,2017,43(6):105-109.TANG Maoying,DUAN Bin,ZHANG Lin,et al.Experimental study on global stability of high gate dam founded on deep overburden by geomechanical model[J].Water Power,2017,43(6):105-109.
    [3] 张泷,刘耀儒,杨强,等.杨房沟拱坝整体稳定性的三维非线性有限元分析与地质力学模型试验研究[J].岩土工程学报,2013,35(S1):239-246.ZHANG Long,LIU Yaoru,YANG Qiang,et al.Global stability of Yangfanggou Arch Dam by 3D nonlinear FEM analysis and geomechanical model tests[J].Chinese Journal of Geotechnical Engineering,2013,35(S1):239-246.
    [4] 李璐,陈秀铜.大型地下洞室群稳定性地质力学模型试验研究[J].地下空间与工程学报,2016,12(S2):510-517.LI Lu,CHEN Xiutong.Experimental study on the stability of large underground cavern group by geo-mechanical model[J].Chinese Journal of Underground Space and Engineering,2016,12(S2):510-517.
    [5] 朱维申,李勇,张磊,等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):1308-1314.ZHU Weishen,LI Yong,ZHANG Lei,et al.Geomechantical model teat on stablility of cavern group under high geostress[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1308-1314.
    [6] 肖诗荣,刘德富,姜福兴,等.三峡库区千将坪滑坡地质力学模型试验研究[J].岩石力学与工程学报,2010,29(5):1023-1030.XIAO Shirong,LIU Defu,JIANG Fuxing,et al.Geomechanical model experiment on qianjiangping landslide in three gores resereservoir area[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(5):1023-1030.
    [7] 刘泉声,雷广峰,肖龙鸽,等.十字岩柱法隧道开挖地质力学模型试验研究[J].岩石力学与工程学报,2016,35(5):919-927.LIU Quansheng,LEI Guangfeng,XIAO Longge,et al.Geomechanical model test on the tunnel excavation with cross rock pillar method[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(5):919-927.
    [8] 张强勇,李术才,李勇,等.大型分岔隧道围岩稳定与支护三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26(S2):4051-4059.ZHANG Qiangyong,LI Shucai,LI Yong,et al.3D geomechanical model test research on stability and supporting for surrounding rock mass of a large-scale diversion tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(S2):4051-4059.
    [9] 李利平,李术才,赵勇,等.超大断面隧道软弱破碎围岩渐进破坏过程三维地质力学模型试验研究[J].岩石力学与工程学报,2012,31(3):550-560.LI Liping,LI Shucai,ZHAO Yong,et al.3D geomechanical model for progressive failure progress of weak broken surrounding rock in super large section tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(3):550-560.
    [10] 付建新,宋卫东,谭玉叶.双层采空区重叠率对隔离顶柱稳定性影响分析及其力学模型[J].采矿与安全工程学报,2018,35(1):58-63.FU Jianxin,SONG Weidong,TAN Yuye.Study on influence of overlapping rate of double layer gobs on stability of isolation roof and its mechanical model[J].Journal of Mining & Safety Engineering,2018,35(1):58-63.
    [11] 周宗红,侯克鹏,任凤玉.跑马坪铅锌矿采空区稳定性分析及控制方法[J].采矿与安全工程学报,2013,30(6):863-867.ZHOU Zonghong,HOU Kepeng,REN Fengyu.Stability analysis of large-scale mined-out area and its control methods in Paomaping lead-zinc deposit[J].Journal of Mining & Safety Engineering,2013,30(6):863-867.
    [12] 宋卫东,付建新,杜建华,等.基于精密探测的金属矿山采空区群稳定性分析[J].岩土力学,2012,33(12):3781-3787.SONG Weidong,FU Jianxin,DU Jianhua,et al.Analysis of stability of goaf group in metal mines based on precision detection[J].Rock and Soil Mechanics,2012,33(12):3781-3787.
    [13] 吴启红,彭振斌,陈科平,等.矿山采空区稳定性二级模糊综合评判[J].中南大学学报(自然科学版),2010,41(2):661-667.WU Qihong,PENG Zhenbin,CHEN Keping,et al.Synthetic judgment on two-stage fuzzy of stability of mine gob area[J].Journal of Central South University (Science and Technology),2010,41(2):661-667.
    [14] 张耀平,曹平,袁海平,等.复杂采空区稳定性数值模拟分析[J].采矿与安全工程学报,2010,27(2):233-238.ZHANG Yaoping,CAO Ping,YUAN Haiping,et al.Numerical simulation on stability of complicated goaf[J].Journal of Mining & Safe ty Engineering,2010,27(2):233-238.
    [15] 赵延林,吴启红,王卫军,等.基于突变理论的采空区重叠顶板稳定性强度折减法及应用[J].岩石力学与工程学报,2010,29(7):1424-1434.ZHAO Yanlin,WU Qihong,WANG Weijun,et al.strength reduction method to study stability of goaf[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(7):1424-1434.
    [16] LIU Y,LI W,HE J,et al.Application of Brillouin optical time domain reflectometry to dynamic monitoring of overburden deformation and failure caused by underground mining[J].International Journal of Rock Mechanics and Mining Sciences,2018,106:133-143.
    [17] GAO X,YAN E,YEH T J,et al.Sequential back analysis of spatial distribution of geomechanical properties around an unlined rock cavern[J].Computers and Geotechnics,2018,99:177-190.
    [18] 杨布华.我国非煤矿山地下采空区稳定性研究进展[J].矿产与地质,2008,22(5):473-479.YANG Buhua.Stabil ities in underground mined-out areas of non-coal mines in China[J].Mineral Resources and Geology,2008,22(5):473-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700