用户名: 密码: 验证码:
浅海小掠射角的海底界面声反向散射模型的简化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simplification of roughness bottom backscattering model at small grazing angle in shallow-water
  • 作者:侯倩男 ; 吴金荣
  • 英文作者:Hou Qian-Nan;Wu Jin-Rong;Key Laboratory of Underwater Acoustic Environment,IACAS;
  • 关键词:海底反向散射模型 ; 强度特性 ; 角度特性 ; 小掠射角近似
  • 英文关键词:bottom sackscattering model;;intensity dependency;;angular dependency;;small grazing angle approximation
  • 中文刊名:物理学报
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院声学研究所水声环境特性重点实验室;
  • 出版日期:2019-02-23
  • 出版单位:物理学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(批准号:11374323,11774375)资助的课题~~
  • 语种:中文;
  • 页:238-246
  • 页数:9
  • CN:11-1958/O4
  • ISSN:1000-3290
  • 分类号:P733.2
摘要
在浅海,尤其是负梯度声速剖面和海面较为平静的浅海波导,海底界面反向散射是浅海混响的主要来源.经验散射模型只适用于分析浅海混响平均强度衰减特性,而基于物理机理建立的反向散射模型克服了这一缺陷,但同时也引入了其受地声模型约束的问题.本文结合了海底反射系数的三参数模型,对浅海远场海底反向散射模型进行了简化,以减少地声模型的输入参数.理论分析了海底反射系数的相移参数可以描述海底对声场的散射作用,无需任何海底地声参数的先验知识.通过对海底反向散射模型近似简化,结果表明在临界角附近和甚小掠射角范围内的海底粗糙界面反向散射模型的角度特性和强度特性受海底沉积层的影响不同:在临界角附近,海底反向散射的角度特性受海底反射系数的相移参数加权,而其散射系数则近似与相移参数无关;对于甚小掠射角,海底反向散射的角度特性近似与海底反射系数的相移参数无关,其散射系数则近似与相移参数的4次方成正比.
        Bottom backscattering due to roughness seafloor is the main source of shallow water reverberation,especially in the waveguide with downward reflection profile or a calm sea-surface. Empirical backscattering models with a simple form has an important limitation to analyzing other characteristics of reverberation except for the intensity characteristics, which originates from optics and describes the relationship between the bottom backscattering strength and scattering grazing angle of plane-wave in half-infinite space. In the shallow water,such a plane-wave backscattering model cannot be used due to frequency dispersion. The model of bottom backscattering based on physical scattering principle is made to relieve such a limitation, but thereby bringing about another restraint by a geoacoustics model. The bottom backscattering model, which is formulated during modeling the full-wave reverberation theory at small grazing angle in range-independent shallow water waveguide, is simplified by combining with bottom reflection coefficient model which is independent of the geoacoustics model. The bottom reflection coefficient model as referred to the proposed phase parameter P in this paper is equivalent to velocity and density of sediment to describe sound field interacted with sea-bottom.Therefore simplification of bottom backscattering model can be handled by the phase parameter without any knowledge of bottom geoacoustic parameters. The angular dependency and intensity dependency of bottom backscattering due to roughness seafloor at small grazing angle are studied more in depth through such a simplified model. Marking 2/P as the cut-off point, the grazing angle is divided into two stages. Near the critical angle, as grazing angle is greater than 2/P and less than critical grazing angle, the angular dependency of bottom backscattering due to roughness seafloor is weighted by phase parameter of bottom reflection coefficient, while the intensity dependency is independent of phase parameter. At each small grazing angle, as grazing angle is less than 2/P, the angular dependency of bottom backscattering due to roughness seafloor is proportional to incident and scattering grazing angle squared and irrespective of phase parameter of bottom reflection coefficient which is like the empirical bottom backscattering model, while the intensity dependency is proportional to the fourth power of phase parameter. So the bottom has different influences on the angular dependency and intensity dependency of bottom backscattering in different stages of grazing angle.
引文
[1]Zhang R H, Li W H, Qiu X F, Jin G L 1995 Acta Acoust. 20417(in Chinese)[张仁和,李文华,裘辛方,金国亮1995声学学报20 417]
    [2]Liu J J, Li F H, Zhang R H 2006 Acta Acoust. 31 173(in Chinese)[刘建军,李风华,张仁和2006声学学报31 173]
    [3]Yao W J, Cai Z M, Wei H K 2009 Acta Acoust. 34 223(in Chinese)[姚万军,蔡志明,卫红凯2009声学学报34 223]
    [4] Zhou J X, Zhang X Z 2012 J. Acoust. Soc. Am. 131 2611
    [5]IsaksonMJ,ChotirosNP2011J. Acoust. Soc. Am.1291237
    [6] Peng Z H, Zhou J X, Zhang R H 2004 Sci. China(Series G)34 378(in Chinese)[彭朝晖,周纪浔,张仁和2004中国科学G辑物理学力学天文学34 378]
    [7] Ivakin A N 1998 J. Acoust. Soc. Am. 103 827
    [8] Ivakin A N 2016 J. Acoust. Soc. Am. 140 657
    [9] Moe J E, Jackson D R 1994 J. Acoust. Soc. Am. 96 1748
    [10] Tang D J, Jackson D R 2017 J. Acoust. Soc. Am. 142 2968
    [11]Shang E C, Gao T F, Wu J R 2008 IEEE J. Ocean Eng. 33451
    [12]Gao T F 1989 Acta Acoust. 14 126(in Chinese)[高天赋1989声学学报14 126]
    [13]TangDJ1997Internal Conference on Shallow-Water Acoustics Beijing, China, April 21-25, 1997 p323
    [14] GaoTF,ShangEC,TangDJ2001Theoretical and Computational AcousticsBeijing,China,May21-25,2001p67
    [15]Wu J R, Shang E C, Gao T F 2010 AIP Conf. Proc. 1272314
    [16]Wu J R, Shang E C, Gao T F 2010 J. Comput. Acous. 18209
    [17]Shang E C 1979 Acta Ocean. Sin. 1 58(in Chinese)[尚尔昌1979海洋学报1 58]
    [18]ZhaoZD,MaL,ShangEC2014J. Comput. Acoust.221440005
    [19]Zhao Z D 2007 Ph. D. Dissertation(Beijing:The University of Chinese Academy of Sciences)(in Chinese)[赵振东2014博士学位论文(北京:中国科学院大学)]
    [20] Goff J A, Jordan T H 1988 J. Geophys. Res. 93 13589

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700