用户名: 密码: 验证码:
铝青铜表面激光熔覆铜基合金的耐蚀性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Resistance of Laser-Clad Copper-Based Alloy on High Manganese Aluminum Bronze Surface
  • 作者:贺春林 ; 付馨莹 ; 陈宏志 ; 霍嘉翔 ; 房博文 ; 冯海东 ; 马国峰 ; 王建明
  • 英文作者:HE Chunlin;FU Xinying;CHEN Hongzhi;HUO Jiaxiang;FANG Bowen;FENG Haidong;MA Guofeng;WANG Jianming;Liaoning Provincial Key Laboratory of Advanced Materials, Shenyang University;
  • 关键词:Cu合金 ; 激光熔覆 ; 微结构 ; 模拟海水 ; 耐蚀性
  • 英文关键词:Cu alloy;;laser cladding;;microstructure;;simulated seawater;;corrosion resistance
  • 中文刊名:沈阳大学学报(自然科学版)
  • 英文刊名:Journal of Shenyang University(Natural Science)
  • 机构:沈阳大学辽宁省先进材料制备技术重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:沈阳大学学报(自然科学版)
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金资助项目(51171118);; 教育部留学回国人员启动基金资助项目
  • 语种:中文;
  • 页:5-9+30
  • 页数:6
  • CN:21-1583/N
  • ISSN:2095-5456
  • 分类号:TG174.4
摘要
为了提高高铝青铜耐蚀性,利用激光熔覆技术在其表面制备了铜基合金涂层.利用场发射扫描电镜、能谱仪和电化学技术对熔覆层的组织、成分以及在模拟海水中的耐蚀性进行了系统研究.激光熔覆层组织致密、细小、无裂纹.电化学实验结果显示,激光熔覆层在模拟海水中的腐蚀电位比基体提高了0.23 V,而腐蚀电流密度则小于基体的1/4,阻抗显著提高,这表明激光熔覆层具有更好的耐海水腐蚀性能,这是因为激光熔覆层组织致密、细小,且镍含量较高.腐蚀形貌显示,高铝青铜的腐蚀形式为择性腐蚀,而激光熔覆层是局部点蚀.
        In order to improve the corrosion resistance of copper manganese aluminum alloy, a copper based alloy coating was prepared on a copper manganese aluminum alloy by laser cladding process. The microstructure and composition of the laser clad were analyzed by field emission scanning electron microscopy with an energy dispersive spectrometer, and the corrosion resistance was investigated in simulated seawater by electrochemical technology. The laser cladding layer is dense, fine, and free of cracks. The corrosion potential of the laser cladding layer in the simulated seawater is increased by 0.23 V compared with the substrate, and the corrosion current density is reduced to 1/4, and the impedance is significantly improved. This indicates that the laser cladding layer has better seawater corrosion resistance because the laser cladding layer is dense, fine, and has a high nickel content. Corrosion morphology shows that the corrosion form of high manganese aluminum bronze is selective corrosion, while the laser cladding layer is local pitting.
引文
[1] 杜磊,周浩.高铝青铜合金成分对力学性能的影响[J].物理测试,2010,28(6):20-22.DU L,ZHOU H.Impact on mechanical properties of high manganese aluminum bronze alloy elements[J].Physics Examination and Testing,2010,28(6):20-22.
    [2] 季玮.稀土对高铝青铜铸态组织和性能的影响[J].中国稀土学报,1995,13(1):54-59.JI W.Effect of rare earth elements on ascast structure and properties of high manganese aluminum bronze[J].Journal of the Chinese Society of Rare Earths,1995,13(1):54-59.
    [3] 林晶,阎永贵,陈光章.高铝青铜的微生物腐蚀行为研究[J].稀有金属材料与工程,2007,36(S3):551-554.LIN J,YAN Y G,CHEN G Z.Study on microbiologically influenced corrosion of copper manganese aluminum alloy[J].Rare Metal Materials and Engineering,2007,36(S3):551-554.
    [4] METIKOS-HUKOVI M,SKUGOR I,GRUBAC Z,et al.Complexities of corrosion behaviour of copper-nickel alloys under liquid impingement conditions in saline water[J].Electrochimica Acta,2010,55(9):3123-3129.
    [5] MA A L,JIANG S L,ZHENG Y G,et al.Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater:composition/structure and formation mechanism[J].Corrosion Science,2015,91:245-261.
    [6] HORTON D J,HA H,FOSTER L L,et al.Tarnishing and Cu ion release in selected copper-base alloys:implications towards antimicrobial functionality[J].Electrochimica Acta,2015,169:351-366.
    [7] 贺春林,李海松,张金林,等.Cu-TiO2纳米复合镀层的腐蚀和光催化性能[J].沈阳大学学报(自然科学版),2012,24(2):40-44.HE C L,LI H S,ZHANG J L,et al.Corrosion behavior and photocatalytic performance of Cu-TiO2 nanocomposite coating[J].Journal of Shenyang University (Natural Science),2012,24(2):40-44.
    [8] 白新波,王为.Cu-Ni-P合金镀层的制备及性能[J].复旦学报(自然科学版),2012,51(2):173-178.BAI X B,WANG W.Preparation and properties of Cu-Ni-P alloy deposites[J].Journal of Fudan University (Natural Science),2012,51(2):173-178.
    [9] LUO Q,QIN Z B,WU Z,et al.The corrosion behavior of Ni-Cu gradient layer on the nickel aluminum-bronze (NAB) alloy[J].Corrosion Science,2018,138:8-19.
    [10] FENG X R,CUI X F,JIN G,et al.Underwater laser cladding in full wet surroundings for fabrication of nickel aluminum bronze coatings[J].Surface & Coatings Technology,2018,333:104-114.
    [11] KWOK C T,MAN H C,CHENG F T,et al.Developments in laser-based surface engineering processes:with particular reference to protection against cavitation erosion[J].Surface & Coatings Technology,2016,291:189-204.
    [12] WU Q L,ZHANG J Q.Corrosion behavior of laser-clad Cu-9Ni-6Sn[J].Surface & Coatings Technology,2018,349:1117-1129.
    [13] 徐建林,龙大伟,高威,等.铝青铜表面激光熔覆层在3.5% NaCl溶液中的腐蚀行为[J].兰州理工大学学报,2010,36(3):6-9.XU J L,LONG D W,GAO W,et al.Corrosion behavior of laser clad aluminum bronze in 3.5% NaCl solution[J].Journal of Lanzhou University of Technology,2010,36(3):6-9.
    [14] BHATTACHARYA S,DINDA G P,DASGUPTA A K,et al.Microstructural evolution and mechanical,and corrosion property evaluation of Cu-30Ni alloy formed by direct metal deposition process[J].Journal of Alloys and Compounds,2011,509(22):6364-6373.
    [15] 马国峰,蔡静,娄德元,等.快速凝固工艺对AZ 91HP镁合金腐蚀性能的影响[J].沈阳大学学报(自然科学版),2012,24(2):26-30.Ma G F,CAI J,LOU D Y,et al.Influence of rapid solidification on corrosion properties of AZ 91HP alloy[J].Journal of Shenyang University (Natural Science),2012,24(2):26-30.
    [16] METIKO?-HUKOVI,BABI,et al.Copper-nickel alloys modified with thin surface films:corrosion behaviour in the presence of chloride ions[J].Corrosion Science,2011,53(1):347-352.
    [17] LO S H,GIBBON W M,HOLLINGSHEAD R S,et al.The development and assessment of rapidly solidified copper-nickel alloys for marine service[J].Materials & Design,1987,8(1):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700