用户名: 密码: 验证码:
转录因子DREB、ERF和NAC在介导植物响应生物和非生物胁迫中的作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Roles of Transcription Factors DREB,ERF and NAC in Mediating Plant Responses to Biotic and Abiotic Stresses
  • 作者:文锦芬 ; 赵凯 ; 邓明
  • 英文作者:Wen Jinfen;Zhao Kai;Deng Minghua;Faculty of Architecture and City Planning,Kunming University of Science and Technology;College of Horticulture,Yunnan Agricultural University;
  • 关键词:转录因子 ; 生物胁迫 ; 非生物胁迫 ; DREB ; ERF ; NAC
  • 英文关键词:transcription factors;;biotic stresses;;abiotic stresses;;DREB;;ERF;;NAC
  • 中文刊名:湖南生态科学学报
  • 英文刊名:Journal of Hunan Ecological Science
  • 机构:昆明理工大学建筑学与城市规划学院;云南农业大学园林园艺学院;
  • 出版日期:2019-09-25
  • 出版单位:湖南生态科学学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金(31760575,31760588,31660576);; 云南省科技计划重点项目(2018BB020)
  • 语种:中文;
  • 页:55-63
  • 页数:9
  • CN:43-1522/Q
  • ISSN:2095-7300
  • 分类号:Q943.2
摘要
生物和非生物胁迫是影响植物生长和造成农业减产的重要原因.近年来,已经鉴定了几个可以调控胁迫相关基因表达的转录因子.这些转录因子在控制植物生物系统转录重编程中起重要作用,能提高植物对生物和非生物胁迫的耐受能力.因此,识别和表征与植物胁迫反应有关的关键基因对增强转基因植物的胁迫耐受能力是必不可少的.本文介绍了DREB、ERF和NAC转录因子,重点介绍其在转基因植物增强对生物和非生物胁迫耐受性的潜力.
        The adverse effects of biotic and abiotic stresses are major factors which affect plant growth and reduce agricultural yield.In recent years,several transcription factors had been identified that could regulate the expression of stress-related genes.These transcription factors played a crucial role in controlling transcriptional reprogramming in the development of plant biological systems,and also enhanced the biotic and abiotic tolerance of plants.Therefore,it is essential to identify and characterize the key genes involved in plant stress responses to enhance the stress tolerance of transgenic plants.DREB,ERF and NAC transcription factors have been introduced with emphasis on their potential to enhance the tolerance of transgenic plants to biotic and abiotic stresses in genetic engineering.
引文
[1] Atkinson N J,Urwin P E.The interaction of plant biotic and abiotic stresses:from genes to the field[J].J Exp Bot,2012,63:3 523-3 543.
    [2] Bray E A,Bailey-Serres J,Weretilnyk E.Responses to abioticstress.Biochemistry and,molecular biology of plants[R].In:GruissemW,Jones R (eds),American Society of Plant Physiologists,Rockville,2000.
    [3] Montesinos E.Antimicrobial peptides and plant diseasecontrol[J].FEMS Microbiol Lett,2007,270:1-11.
    [4] Mittler R,Blumwald E.Genetic engineering for modern agriculture:challenges and perspectives[J].Annu Rev Plant Biol,2020,61:443-462.
    [5] Hernandez-Garcia C M,Finer J J.Identification and validationof promoters and cis-acting regulatory elements[J].Plant Sci,2014,217-218:109-119.
    [6] Mitsuda N,Ohme-Takagi M.Functional analysis of transcriptionfactors in Arabidopsis[J].Plant Cell Physiol,2009,50:1 232-1 248.
    [7] Buscaill P,Rivas S.Transcriptional control of plant defence responses[J].Curr Opin Plant Biol,2014,20:35-46.
    [8] Kilian J,Peschke F,Berendzen K W,et al.Prerequisites,performance and profits of transcriptional profiling theabiotic stress response[J].BBA-Gene Regul Mech,2012,1 819:166-175.
    [9] Pandey P,Ramegowda V,Senthil-Kumar M.Shared and uniqueresponses of plants to multiple individual stresses and stresscombinations:physiological and molecularmechanisms[J].Front Plant Sci,2015,6:723.
    [10] Humphrey T V,Bonetta D T,Goring D R.Sentinels at the wall:cell wall receptors and sensors[J].New Phytol,2007,176:7-21.
    [11] Munnik T,Vermeer J E M.Osmotic stress-induced phosphoinositideand inositol phosphate signalling in plants[J].Plant Cell Environ,2010,33:655-659.
    [12] Eyidogan F,Oz M T,Yucel M,et al.Signal transductionof phytohormones under abiotic stresses[J].Phytohorm AbioticStress Toler Plants,2012,642:978-1 007.
    [13] Wurzinger B,Mair A,Pfister B,et al.Cross-talk of calcium dependent protein kinase and MAP kinase signaling[J].Plant Signal Behav,2011,6:8-12.
    [14] Samad A F A,Sajad M,Nazaruddin N,et al.Micro RNA and transcription factor:key playersin plant regulatory network[J].Front Plant Sci,2017,8:565.
    [15] Sakuma Y,Liu Q,Dubouzet J G,et al.DNA-binding specificity of the ERF/AP2domain of Arabidopsis DREBs,transcription factors involvedin dehydration-and cold-inducible gene expression[J].Biochem Biophys Res Commun,2002,290:998-1 009.
    [16] Agarwal M,Hao Y,Kapoor A,et al.A R2R3 type MYB transcription factor is involved in thecold regulation of CBF genes and in acquired freezing tolerance[J].J Biol Chem,2006,281:37 636-37 645.
    [17] Dubouzet J G,Sakuma Y,Ito Y,et al.OsDREB genes in rice,Oryza sativa L.,encode transcription activatorsthat function in drought,high-salt-and cold responsive geneexpression[J].Plant J,2003,33:751-763.
    [18] Kudo K,Oi T,Uno Y.Functional characterization and expressionprofiling of a DREB2-type Gene from lettuce (Lactucasativa L.)[J].Plant Cell Tissue Organ Cult,2014,116:97-109.
    [19] Li X,Zhang D,Li H,et al.EsDREB2B,a novel truncated DREB2-type transcription factor in the desertlegume Eremospartonsongoricum,enhances tolerance to multipleabiotic stresses in yeast and transgenic tobacco[J].BMC Plant Biol,2014,14:44.
    [20] Kume S,Kobayashi F,Ishibashi M,et al.Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivarsshowing distinct levels of freezing tolerance[J].Genes Genet Syst,2005,80:185-197.
    [21] Yang T,Zhang L,Zhang T,et al.Transcriptionalregulation network of cold-responsive genes in higherplants[J].Plant Sci,2005,169:987-995.
    [22] Chinnusamy V,Ohta M,Kanrar S,et al.ICE1:a regulator of cold-induced transcriptome andfreezing tolerance in Arabidopsis[J].Gene Dev,2003,17:1 043-1 054.
    [23] Dong C H,Agarwal M,Zhang Y,et al.The negativeregulator of plant cold responses,HOS1,is a RING E3 ligase thatmediates the ubiquitination and degradation of ICE1[J].Proc Natl Acad Sci USA,2006,103:8 281-8 286.
    [24] Shi H,Chan Z.The cysteine2/histidine2-type transcriptionfactor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activatedC-REPEAT-BINDING FACTOR pathway is essential formelatonin-mediated freezing stress resistance in Arabidopsis[J].J Pineal Res,2014,57:185-191.
    [25] Nakamichi N,Kusano M,Fukushima A,et al.Transcript profiling ofan Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmictriple mutant reveals a role for the circadian clock in coldstress response[J].Plant Cell Physiol,2009,50:447-462.
    [26] Jin W M,Dong J,Hu Y L,et al.Improvedcold-resistant performance in transgenic grape (Vitisvinifera L.)overexpressing cold inducible transcription factors AtDREB1b[J].Hortscience,2009,44:35-39.
    [27] Owens C L,Thomashow M F,Hancock J F,et al.CBF1 orthologs in sour cherry and strawberry and the heterologousexpression of CBF1 in strawberry[J].J Am SocHorticSci,2002,127:489-494.
    [28] Savitch L V,Allard G,Seki M,et al.The effect of overexpression of twoBrassica CBF/DREB1-like transcription factors on photosyntheticcapacity and freezing tolerance in Brassica napus[J].Plant Cell Physiol,2005,46:1 525-1 539.
    [29] Zhao J,Ren W,Zhi D,et al.Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance todrought stress[J].Plant Cell Rep,2007,26:1 521-1 528.
    [30] Qin F,Sakuma Y,Li J,et al.Cloning and functional analysis of a novelDREB1/CBF transcription factor involved in cold-responsivegene expression in Zea mays L[J].Plant Cell Physiol,2004,45:1 042-1 052.
    [31] Zhang X,Fowler S G,Cheng H,et al.Freezing-sensitive tomato has afunctional CBF cold response pathway,but a CBF regulonthat differs from that of freezing-tolerant Arabidopsis[J].Plant J,2004,39:905-919.
    [32] Yang W,Liu X D,Chi X J,et al.Dwarf apple MbDREB1 enhancesplant tolerance to low temperature,drought,and salt stress viaboth ABA-dependent and ABA-independent pathways[J].Planta,2011,233:219-229.
    [33] Sakuma Y,Maruyama K,Qin F,et al.Dual function of anArabidopsis transcriptionfactor DREB2A in water-stress-responsive and heat stress-responsive gene expression[J].Proc Natl Acad Sci USA,2006,103:18 822-18 827.
    [34] Qin F,Sakuma Y,Tran L S,et al.Arabidopsis DREB2A interacting proteins function as RING E3 ligases and negativelyregulate plant drought stress-responsive gene expression[J].Plant Cell,2008,20:1 693-1 707.
    [35] Kim J S,Mizoi J,Kidokoro S,et al.Arabidopsis growth-regulating factor 7 functions as a transcriptionalrepressor of abscisic acid and osmotic stress-responsivegenes,including DREB2A[J].Plant Cell,2012,24:3 393-3 405.
    [36] Schramm F,Larkindale J,Kiehlmann E,et al.A cascade of transcriptionfactor DREB2A and heat stress transcription factor HsfA3 regulatesthe heat stress response of Arabidopsis[J].Plant J,2008,53:264-274.
    [37] Qin F,Kakimoto M,Sakuma Y,et al.Regulation andfunctional analysis of ZmDREB2A in response to drought andheat stresses in Zea mays L[J].Plant J,2007,50:54-69.
    [38] Cui M,Zhang W,Zhang Q,et al.Inducedover-expression of the transcription factor OsDREB2A improvesdrought tolerance in rice[J].Plant Physiol Biochem,2011,49:1 384-1 391.
    [39] Chen J Q,Meng X P,Zhang Y,et al.Over-expressionof OsDREB genes lead to enhanced drought tolerance inrice[J].Biotechnol Lett,2008,30:2 191-2 198.
    [40] Zhang X X,Tang Y J,Ma Q B,et al.OsDREB2A,a rice transcription factor,significantlyaffects salt tolerance in transgenic soybean[J].PLoS ONE,2013,8:e83 011.
    [41] Chen M,Wang Q Y,Cheng X G,et al.GmDREB2,a soybean DRE-binding transcription factor,conferred drought and high-salt tolerance in transgenic plants[J].Biochem Biophys Res Commun,2007,353:299-305.
    [42] Agarwal P,Agarwal P K,Joshi A J,et al.Overexpression of PgDREB2A transcription factor enhances abioticstress tolerance and activates downstream stress-responsivegenes[J].Mol Biol Rep,2010,37:1 125-1 135.
    [43] Morran S,Eini O,Pyvovarenko T,et al.Improvementof stress tolerance of wheat and barley by modulation of expressionof DREB/CBF factors[J].Plant Biotechnol J,2011,9:230-249.
    [44] Chen H,Liu L,Wang L,et al.VrDREB2A,aDREB-binding transcription factor from Vignaradiata,increaseddrought and high-salt tolerance in transgenic Arabidopsis thaliana[J].J Plant Res,2016,129:1-11.
    [45] Arroyo-Herrera A,Figueroa-Yáňez L,Castaňo E,et al.A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress[J].Plant CellTissue Organ Cult,2016,125:119-133.
    [46] Zarei A,K?rbes A P,Younessi P,et al.(2011) Two GCC boxes and AP2/ERF-domain transcriptionfactor ORA59 in jasmonate/ethylene-mediated activation of thePDF1.2 promoter in Arabidopsis[J].Plant Mol Biol,2011,75:321-331.
    [47] Chao G,Zhi-Hua G,Ping-Ping H,et al.Multiple regulatory roles of AP2/ERF transcriptionfactor in angiosperm[J].Bot Stud,2017,58:6.
    [48] Rehman S,Mahmood T.Functional role of DREB and ERF transcriptionfactors:regulating stress-responsive network in plants[J].Acta Physiol Plant,2015,37:1-14.
    [49] Yang Z,Tian L,Latoszek-Green M,et al.ArabidopsisERF4 is a transcriptional repressor capable of modulatingethylene and abscisic acid responses[J].Plant Mol Biol,2005,58:585-596.
    [50] Zhang G,Chen M,Li L,et al.Overexpressionof the soybean GmERF3 gene,an AP2/ERF typetranscription factor for increased tolerances to salt,drought,anddiseases in transgenic tobacco[J].J Exp Bot,2009,60:3 781-3 796.
    [51] Lorenzo O,Piqueras R,Sanchez-Serrano J J,et al.Ethyleneresponse factor 1 integrates signals from ethylene and jasmonate pathways in plant defense[J].Plant Cell,2003,15:165-178.
    [52] Dong L,Cheng Y,Wu J,et al.Overexpression of GmERF5,a new member of the soybean EAR motif containing ERF transcriptionfactor,enhances resistance to Phytophthorasojae in soybean[J].J Exp Bot,2015,66:2 635-2 647.
    [53] Xu Z S,Chen M,Li L C,et al.Functions of the ERF transcriptionfactor family in plants[J].Botany,2008,86:969-977.
    [54] Zhao Y,Chang X,Qi D,et al.A novel soybean ERFtranscription factor,GmERF113,increases resistance to Phytophthorasojae infection in soybean[J].Front Plant Sci,2017,8:299.
    [55] Fischer U,Dr?ge-Laser W.Overexpression of NtERF5,a newmember of the tobacco ethylene response transcription factorfamily enhances resistance to tobacco mosaic virus[J].MPMI,2004,17:1 162-1 171.
    [56] Huang Y,Zhang B L,Sun S,et al.AP2/ERF transcription factors involved inresponse to tomato yellow leaf curly virus in tomato[J].Plant Genome,2016,9:1-15.
    [57] Hickman R,Hill C,Penfold C A,et al.A local regulatory network around three NAC transcription factorsin stress responses and senescence in Arabidopsis leaves[J].Plant J,2013,75:26-39.
    [58] Negi S,Tak H,Ganapathi T R.Expression analysis of MusaNAC68 transcription factor and its functional analysis byoverexpression in transgenic banana plants[J].Plant Cell TissueOrgan Cult,2016,125:59-70.
    [59] Xu Q F,He Q,Li S,et al.Molecular characterization of StNAC2 in potato and its overexpression confers drought andsalt tolerance[J].Acta Physiol Plant,2014,36:1 841-1 851.
    [60] Mao H,Yu L,Han R,et al.ZmNAC55,a maize stress responsiveNAC transcription factor,confers drought resistancein transgenic Arabidopsis[J].Plant Physiol Biochem,2016,105:55-66.
    [61] Lu M,Ying S,Zhang D F,et al.Amaize stress-responsive NAC transcription factor,ZmSNAC1,confers enhanced tolerance to dehydration in transgenic Arabidopsis[J].Plant Cell Rep,2012,31:1 701-1 711.
    [62] Lu M,Zhang D F,Shi Y S,et al.Expressionof SbSNAC1,a NAC transcription factor from sorghum,confersdrought tolerance to transgenic Arabidopsis[J].Plant Cell Tissue Organ Cult,2013,115:443-455.
    [63] Zheng X,Chen B,Lu G,et al.Overexpression of a NACtranscription factor enhances rice drought and salt tolerance[J].Biochem Biophys Res Commun,2009,379:985-989.
    [64] Liu Q L,Xu K D,Zhao L J,et al.(2011)Overexpression of a novel chrysanthemum NAC transcriptionfactor gene enhances salt tolerance in tobacco[J].Biotechnol Lett,2011,33:2 073-2 082.
    [65] Movahedi A,Zhang J,Gao P,et al.Expression of the chickpea Car-NAC3 gene enhances salinity and drought tolerance in transgenicpoplars[J].Plant Cell Tissue Organ Cult,2015,120:141-154.
    [66] Wang L,Hu Z,Zhu M,et al.Theabiotic stress-responsive NAC transcription factor SlNAC11 isinvolved in drought and salt response in tomato (SolanumlycopersicumL.)[J].Plant Cell Tissue Organ Cult,2017,129:161-174.
    [67] Guo W,Zhang J,Zhang N,et al.The wheat NAC transcription factorTaNAC2L is regulated atthe transcriptional and post-translational levels and promotesheat stress tolerance in transgenic Arabidopsis[J].PLoS ONE,2015,10:e0135 667.
    [68] Hao Y J,Wei W,Song Q X,et al.Soybean NAC transcriptionfactors promote abiotic stress tolerance and lateral root formationin transgenic plants[J].Plant J,2011,68:302-313.
    [69] Bu Q,Jiang H,Li C B,et al.Role of the Arabidopsis thaliana NAC transcriptionfactors ANAC019 and ANAC055 in regulating jasmonic acid signaled defense responses[J].Cell Res,2008,18:756-767.
    [70] Selth L A,Dogra S C,Rasheed M S,et al.A NAC domain protein interacts with tomato leaf curlvirus replication accessory protein and enhances viral replication[J].Plant Cell,2005,17:311-325.
    [71] Wang X,Goregaoker S P,Culver J N.Interaction of the Tobaccomosaic virus replicase protein with a NAC domain transcriptionfactor is associated with the suppression of systemic hostdefenses[J].J Virol,2009,83:9 720-9 730.
    [72] Fujita M,Fujita Y,Maruyama K,et al.Adehydration-induced NAC protein,RD26,is involved in a novelABA-dependent stress-signaling pathway[J].Plant J,2004,39:863-876.
    [73] Mauch-Mani B,Flors V.(2009) The ATAF1 transcription factor:at theconvergence point of ABA-dependent plant defense against bioticand abiotic stresses[J].Cell Res,2009,19:1 322.
    [74] Nuruzzaman M,Manimekalai R,Sharoni A M,et al.Genome-wide analysis of NAC transcriptionfactor family in rice[J].Gene,2010,465:30-44.
    [75] Nakashima K,Tran L S P,Van Nguyen D,et al.Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive geneexpression in rice[J].Plant J,2007,51:617-630.
    [76] Le Hénanff G,Profizi C,Courteaux B,et al.Grapevine NAC1 transcription factor as a convergent node indevelopmental processes,abiotic stresses,and necrotrophic/biotrophic pathogen tolerance[J].J Exp Bot,2013,64:4 877-4 893.
    [77] Wang G,Zhang S,Ma X,et al.A stressassociated NAC transcription factor (SlNAC35) from tomatoplays a positive role in biotic and abiotic stresses[J].Physiol Plant,2016,158:45-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700