用户名: 密码: 验证码:
基于小区实测数据的不同类型土壤可蚀性因子计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation of Soil Erodibility Factor Under Different Soil Types Based on Runoff Plot Data
  • 作者:杨欣 ; 郭乾坤 ; 王爱娟 ; 刘宝元 ; 张蒙娜 ; 常琪琪
  • 英文作者:Yang Xin;Guo Qiankun;Wang Aijuan;Liu Baoyuan;Zhang Mengna;Chang Qiqi;Faculty of Geographical Science, Beijing Normal University;China Institute of Water Resources and Hydropower Research;Research Center on Soil and Water Conservation of MWR;Center of Soil and Water Conservation Monitoring, Ministry of Water Resources;
  • 关键词:土壤可蚀性因子 ; 观测数据 ; 裸地小区 ; 农地小区
  • 英文关键词:soil erodibility factor;;surveying data;;bare plot;;farm land plot
  • 中文刊名:水土保持通报
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:北京师范大学地理科学学部;中国水利水电科学研究院;水利部水土保持生态工程技术研究中心;水利部水土保持监测中心;
  • 出版日期:2019-08-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划项目“生态治理与生态文明建设生态技术筛选、配置与试验示范”(2016YFC0503705);; 水利部财政预算项目“全国水土流失动态监测项目”(126216229000150001)
  • 语种:中文;
  • 页:120-125
  • 页数:6
  • CN:61-1094/X
  • ISSN:1000-288X
  • 分类号:S157.1
摘要
[目的]对不同类型土壤可蚀性因子进行计算,为土壤侵蚀定量评价、水土流失动态监测提供科学依据。[方法]通过收集全国范围野外径流小区实测资料,采用一定的数据遴选标准,利用小区法计算我国主要土壤的K值;同时考虑实测值评价Wischmeier和EPIC K值估算公式在我国的适用性。[结果]我国主要土壤的K值范围分布在0.0008~0.0705 (t·hm~2·h)/(hm~2·MJ·mm)之间。黑土、黄绵土和褐土的K值较大,红壤和紫色土因子值较小。全国范围内,公式估算得到的K值与实测值存在较大误差;修订后的Wischmeier公式估算东北黑土区K值精度相对较高。[结论]基于全国实测站点数据和文献数据,计算出修正到标准小区的K值,K值空间变化幅度较大,大体呈现出从北向南减小的趋势。为获得比较准确的K值,建立相关经验公式需进一步加强监测点管理和长序列观测数据的积累。
        [Objective] The erodibility factors of different soil types were calculated in order to provide scientific basis for quantitative evaluation of soil erosion and dynamic monitoring of soil erosion. [Methods] By collecting data from runoff plots in the whole country and using the data selection criteria. The K factor value of the main kinds of soil in China was calculated by plot data and evaluated the applicability of the Wischmeier's and the EPIC model in the country. [Results] The K value of the main kinds of soil in China ranged from 0.000 8 to 0.070 5(t·hm~2·h)/(hm~2·MJ·mm). The K value of black soil, cultivated loessial soil and cinnamon soil were higher, while it was lower in the red earths and purple soil. In the whole country, there was a large deviation between the K factor values estimated by the models and the observed data, but the revised empirical model could be used properly in the black soil region of Northeast China. [Conclusion] The K value correcting to the unit runoff plot was calculated based on the data of the runoff plots and references throughout the country. The K value varied greatly over space, it showed that there had a decreasing tendency from the north to the south. In order to obtain a more accurate K value and establish relevant empirical formulas, it was necessary to further strengthen the monitoring points management and the accumulation of long-term observation data.
引文
[1] Bennett H H.Some comparisons of the properties of humid-tropical and humid-temperate American soils,with special reference to indicated relations between chemical composition and physical properties[J].Soil Science,1926,21(5):349-376.
    [2] Middleton H E .Properties of soils which influence soil erosion[J].Soil Science Society of America,1930,2:119-121.
    [3] 朱显谟,张相麟,雷文进.泾河流域土壤侵蚀现象及其演变[J].土壤学报,1954,2(4):3-16.
    [4] 田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报,1964(3):286-296.
    [5] Olson T C,Wischmeier W H.Soil-erodibility evaluations for soils on the runoff and erosion stations 1[J].Soil Science Society of America Journal,1963,27(5):590-592.
    [6] Wischmeier W H,Smith D D.Predicting rainfall erosion losses[M]//Agricultural Handbook 537.Agricultural Research Service,United States Department of Agriculture,1978.
    [7] 中华人民共和国水利部.第一次全国水利普查水土保持情况公报[J].中国水土保持,2013(10):64-64.
    [8] 黄晓强,赵云杰,信忠保,等.北京山区典型土地利用方式对土壤理化性质及可蚀性的影响[J].水土保持研究,2015,22(1):5-10.
    [9] 钟壬琳.江西省土壤抗侵蚀性指标区域分布特征分析[D].湖北武汉:长江科学院,2010.
    [10] 张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报,2007,44(1):7-13.
    [11] 张宪奎,许靖华,卢秀琴,等.黑龙江省土壤流失方程的研究[J].水土保持通报,1992,12(4):1-9.
    [12] 翟伟峰,许林书.东北典型黑土区土壤可蚀性K值研究[J].土壤通报,2011,42(5):1209-1213.
    [13] 孙景华,杨玉阁,张本家,等.辽北低山丘陵区坡耕地水土流失规律研究[J].水土保持研究,1997,4(4):65-74.
    [14] 夏美玲,高之栋,周岩,等.赣榆县夹谷山坡面侵蚀产沙特征及其影响因素[J].水土保持通报,2014,34(2):11-14.
    [15] 金争平,史培军.黄河皇甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992:60-81.
    [16] Liu Baoyuan,Nearing M A,Risse L M.Slope gradient effects on soil loss for steep slopes[J].Soil Science Society of America Journal,2000,64(5):1759-1763.
    [17] Liu Baoyuan,Nearing M A,Shi Prijun,et al.Slope length effects on soil loss for steep slopes[J].Soil Science Society of America Journal,2000,64(5):1759-1763.
    [18] 邵永昌.安徽大别山区典型流域降雨径流产沙规律研究[D].江苏南京:南京林业大学,2016.
    [19] 杨洁.红壤坡地柑橘园水土保持水文效应研究[D].江西南昌:江西农业大学,2011.
    [20] 何长高.低丘红壤水土流失及其保土耕作措施研究[J].水土保持学报,1995,9(1):82-85.
    [21] 谢庭生,谢树春,赵玲,等.红壤低丘坡耕地垄作草垱区田的种植效应试验[J].水资源与水工程学报,2015(6):220-224.
    [22] 刘亚云,谭敦英.紫色土坡耕地保土耕作研究初报[J].耕作与栽培,1992(4):63-64.
    [23] 李锡泉,田育新,袁正科,等.湘西山地不同植被类型的水土保持效益研究[J].水土保持研究,2003,10(2):123-125.
    [24] 周伏建,黄炎和.福建省土壤流失预防研究[J].水土保持学报,1995,9(1):25-30.
    [25] 丁光敏,林桂志,刘廉海,等.坡地幼龄果园不同水土保持措施水沙调控研究[J].亚热带水土保持,2006,18(3):1-3.
    [26] 陈法扬,王志明.通用土壤流失方程在小良水土保持试验站的应用[J].水土保持通报,1992,12(1):23-41.
    [27] 杨占彪,朱波,林立金,等.川中丘陵区紫色土坡耕地土壤侵蚀特征[J].四川农业大学学报,2010,28(4):480-485.
    [28] 吕甚悟,陈谦,袁绍良,等.紫色土坡耕地水土流失试验分析[J].山地学报,2000,18(6):520-525.
    [29] 朱青,王兆骞,尹迪信.贵州坡耕地水土保持措施效益研究[J].自然资源学报,2008,23(2):219-229.
    [30] 杨子生.滇东北山区坡耕地土壤流失方程研究[J].水土保持通报,1999,19(1):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700