用户名: 密码: 验证码:
承压水体上下位煤层工作面采前底板岩体损伤破坏研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Damage of Floor Rock Mass Before Mining in Lower Coal Seam Working Face above the Confined Water
  • 作者:许延春 ; 李鹏飞 ; 郭文砚 ; 赵朝 ; 禹云雷
  • 英文作者:Xu Yanchun;Li Pengfei;Guo Wenyan;Zhao Zhao;Yu Yunlei;School of Energy and Mining Engineering,China University of Mining & Technology(Beijing);National Engineering Research Center of Coal Mine Water Hazard Controlling;Datun Group Co.Ltd. of Coal and Electricity;
  • 关键词:近距离煤层 ; 岩体损伤 ; 超声波 ; 弹性模量 ; 岩石强度
  • 英文关键词:Close-distance coal seam;;Rock mass damage;;Ultrasonic wave;;Elastic modulus;;Rock strength
  • 中文刊名:金属矿山
  • 英文刊名:Metal Mine
  • 机构:中国矿业大学(北京)能源与矿业学院;国家煤矿水害防治工程技术研究中心;大屯能源股份有限公司;
  • 出版日期:2019-10-15
  • 出版单位:金属矿山
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金青年科学基金项目(编号:51504095);; “十三五”国家重点研发计划项目(编号:2017YFC0804108);; 中央高校基金本科研业务费项目(编号:3142018021,3142015082)
  • 语种:中文;
  • 页:125-131
  • 页数:7
  • CN:34-1055/TD
  • ISSN:1001-1250
  • 分类号:TD325;TD745;TD823.83
摘要
为研究徐庄矿承压水体上近距离煤层上位7199工作面开采后对下位8199工作面采前底板岩体的损伤程度,将该矿8199工作面和姚桥矿7265工作面底板岩体进行对比,采用钻孔超声探测、岩芯室内超声透射及点载荷试验方法进行研究。研究表明:岩体弹性模量与岩体密度、岩性及完整性呈非线性正相关关系。徐庄矿8199工作面底板浅部砂质泥岩、砂岩受顶煤采动影响,损伤程度大,已散失原有的承载能力;中部完整泥岩段未受顶煤采动及逆断层影响,损伤程度弱;底部泥岩及灰岩段受逆断层影响严重,原始损伤程度大。力学试验验证了室内外声波测试结果的准确性,建立了泥岩、砂岩损伤前后强度—弹性模量数学关系式。分析成果对于相似条件下煤层底板破坏深度预计及工作面底板防治水等方面具有一定的参考意义。
        In order to study the damage degree of floor rock mass before the lower 7199 working face is mined and after the upper 8199 working face is explored for close-distance coal seam above confined water body of Xuzhuang Mine,the floor rock mass at 8199 working face of the mine and 7265 working face of Yaoqiao Mine are compared and studied by borehole ultrasonic detection,core indoor ultrasonic transmission and point load experiment.The study results show that the elastic modulus of rock mass is positively correlated with the density,lithology and integrity of rock mass.The shallow sandy mudstone and sandstone of Xuzhuang 8199 working face floor are affected by top coal mining,with large damage degree,which makes it lose the original bearing capacity;the complete mudstone section in the middle is not affected by top coal mining and reverse fault,with weak damage degree;the mudstone and limestone section in the bottom is seriously affected by reverse fault,with large original damage.Mechanical experiments verify the accuracy of indoor and outdoor acoustic testing results,and establish the mathematical relationship between strength and elastic modulus of mudstone and sandstone before and after damage.The above study resutls can provide certain reference significance for the prediction of the failure depth of coal seam floor and water prevention and control of the floor of working face.
引文
[1]高峰,许爱斌,周福宝.保护层开采过程中煤岩损伤与瓦斯渗透性的变化研究[J].煤炭学报,2011,36(12):1979-1984.Gao Feng,Xu Aibin,Zhou Fubao.Study on the change of coal and rock damage and gas permeability during the mining process of protective layer[J].Journal of China Coal Society,2011,36(12):1979-1984.
    [2]李利平,李术才,石少帅,等.岩体突水通道形成过程中应力-渗流-损伤多场耦合机制[J].采矿与安全工程学报,2012,29(2):232-238.Li Liping,Li Shucai,Shi Shaoshuai,et al.Multi-field coupling mechanism of stress-seepage damage in the formation of water inrush channel[J].Journal of Mining&Safety Engineering,2012,29(2):232-238.
    [3]王宇,李晓,胡瑞林,等.岩土超声波测试研究进展及应用综述[J].工程地质学报,2015,23(2):287-300.Wang Yu,Li Xiao,Hu Ruilin,et al.Research progress and application of geotechnical ultrasonic testing[J]. Journal of Engineering Geology,2015,23(2):287-300.
    [4]张晓君,林芊君,宋秀丽,等.裂隙岩体损伤破裂演化超声波量化预测研究[J].采矿与安全工程学报,2017,34(2):378-383.Zhang Xiaojun,Lin Qianjun,Song Xiuli,et al.Ultrasonic quantitative prediction of damage and fracture evolution of fractured rock mass[J].Journal of Mining&Safety Engineering,2017,34(2):378-383.
    [5]金长宇,李婕,冯夏庭,等.深部损伤岩体弹性模量的确定方法[J].采矿与安全工程学报,2014,31(1):78-83.Jin Changyu,Li Jie,Feng Xiating,et al.Determination of elastic modulus of deep damaged rock mass[J].Journal of Mining&Safety Engineering,2014,31(1):78-83.
    [6]潘卫东,张辉,罗烨.超声波检测在矿山岩石力学工程分析中的应用[J].金属矿山,2009(S1):633-636.Pan Weidong,Zhang Hui,Luo Ye.Application of ultrasound detection in rock mechanics engineering analysis of mines[J].Metal Mines,2009(S1):633-636.
    [7]成林,王赟,张玉贵,等.煤岩声波特征研究现状及展望[J].地球物理学进展,2013,28(1):452-461.Cheng Lin,Wang Yun,Zhang Yugui,et al.Current status and prospects of acoustic characteristics of coal and rock[J].Progress in Geophysics,2013,28(1):452-461.
    [8]赵超杰,李军,吴志勇,等.清水钻井液作用下煤岩声学特性试验研究[J].煤炭科学技术,2018,46(5):60-66.Zhao Chaojie,Li Jun,Wu Zhiyong,et al.Experimental study on coal and rock acoustic characteristics under the role of water drilling fluid[J].Coal Science and Technology,2018,46(5):60-66.
    [9]吴涛,戴俊,杜美利,等.基于声波法测试技术的巷道围岩松动圈测定[J].煤矿安全,2015,46(1):169-172.Wu Tao,Dai Jun,Du Meili,et al.Determination of loose rock of surrounding rock of roadway based on acoustic test technology[J].Safety in Coal Mines,2015,46(1):169-172.
    [10]许延春,谢小锋,刘世奇,等.注浆加固工作面底板岩体力学性质“增强-损伤”的定量测定[J].采矿与安全工程学报,2017,34(6):1186-1193.Xu Yanchun,Xie Xiaofeng,Liu Shiqi,et al.Quantitative determination of mechanical properties of reinforcement and damage in the grouting reinforcement working face rock[J].Journal of Mining&Safety Engineering,2017,34(6):1186-1193.
    [11]许延春,谢小锋,李昆奇,等.基于超声波检测的岩体裂隙及注浆影响的试验研究[J].煤矿开采,2016,21(2):60-63.Xu Yanchun,Xie Xiaofeng,Li Kunqi,et al.Experimental study on rock mass fissure and grouting effect based on ultrasonic testing[J].Coal Mining Technology,2016,21(2):60-63.
    [12]严鹏,张晨,高启栋,等.不同损伤程度下岩石力学参数变化的声波测试[J].岩土力学,2015,36(12):3425-3432.Yan Peng,Zhang Chen,Gao Qidong,et al.Acoustic wave test of rock mechanical parameters under different damage degrees[J].Rock and Soil Mechanics,2015,36(12):3425-3432.
    [13]程爱平,张玉山,戴顺意,等.胶结充填体超声波波速损伤演化试验[J].金属矿山,2018(9):41-46.Cheng Aiping,Zhang Yushan,Dai Shunyi,et al.Evolution test of ultrasonic wave velocity damage of cemented filling body[J].Metal Mine,2018(9):41-46.
    [14]李月.层状岩体声学特性研究[D].成都:西华大学,2007.Li Yue.Study on Acoustic Characteristics of Layered Rock Mass[D].Chengdu:Xihua University,2007.
    [15]何鹏,刘长武,王琛,等.沉积岩单轴抗压强度与弹性模量关系研究[J].四川大学学报:工程科学版,2011,43(4):7-12.He Peng,Liu Changwu,Wang Chen,et al.Relationship between uniaxial compressive strength and elastic modulus of sedimentary rocks[J].Journal of Sichuan University:Engineering Science Edition,2011,43(4):7-12.
    [16]林斌,徐冬.不同岩性岩石的单轴抗压强度与弹性模量关系[J].煤矿安全,2017,48(3):160-162.Lin Bin,Xu Dong.Relationship between uniaxial compressive strength and elastic modulus of different lithologic rocks[J].Safety of Coal Mines,2017,48(3):160-162.
    [17]于师建,杨永杰,刘伟韬.煤岩动静力学参数关系试验研究[J].煤田地质与勘探,2015,43(1):17-21.Yu Shijian,Yang Yongjie,Liu Weiyao.Experimental study on the relationship between dynamic and mechanical parameters of coal and rock[J].Coal Geology&Exploration,2015,43(1):17-21.
    [18]陈鹏辉,罗松.基于岩体累积损伤的爆破振动安全阈值研究[J].有色金属:矿山部分,2016,68(4):54-56.Chen Penghui,Luo Song.Study on safety threshold of blasting vibration based on cumulative damage of rock mass[J].Nonferrous Metals:Mine Section,2016,68(4):54-56.
    [19]赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究[J].岩土工程学报,2000(6):720-722.Zhao Mingjie,Xu Rong.The rock damage and strength study based on ultrasonic velocity[J].Journal of Geotechnical Engineering,2000(6):720-722.
    [20]闫立宏.杨庄煤矿煤岩波速特征及与其强度的关系研究[J].煤炭科学技术,2006,34(6):57-60.Yan Lihong.Study on the relationship between wave velocity characteristics and strength of coal and rock in Yangzhuang Coal Mine[J].Coal Science and Technology,2006,34(6):57-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700