用户名: 密码: 验证码:
烟台市典型工业排放PM_(2.5)源成分谱特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PM_(2.5) Profiles of Typical Industrial Emissions in Yantai City,China
  • 作者:温杰 ; 李博 ; 张秀丽 ; 田瑛泽 ; 黄渤 ; 朱红霞 ; 冯银厂
  • 英文作者:WEN Jie;LI Bo;ZHANG Xiuli;TIAN Yingze;HUANG Bo;ZHU Hongxia;FENG Yinchang;State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control,College of Environmental Science and Engineering,Nankai University;Yantai Environmental Monitoring Center;Guangzhou Hexin Instrument Company Limited;China Environmental Monitoring Station;
  • 关键词:烟台市 ; PM2.5 ; 源成分谱 ; 典型工业排放 ; 重金属
  • 英文关键词:Yantai City;;PM2.5;;source profiles;;industries emissions;;heavy metal
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:南开大学环境科学与工程学院国家环境保护城市空气颗粒物污染防治重点实验室;烟台市环境监控中心;广州禾信仪器股份有限公司;中国环境监测总站;
  • 出版日期:2019-04-15 15:43
  • 出版单位:环境科学研究
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划重点专项(No.2016FYC0208500,2016FYC0208501)~~
  • 语种:中文;
  • 页:81-87
  • 页数:7
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:X513
摘要
鉴于烟台市本地化源成分谱研究缺乏的现状,以及颗粒物精细化来源解析及环境管理的需求,采用NK-ZXF颗粒物再悬浮采样器,对6家烟台市典型工业下载灰源样品进行再悬浮采样,构建6类〔燃煤电厂、供热锅炉、生物质锅炉、钢铁(烧结)行业、玻璃行业和垃圾处理行业〕PM_(2.5)源成分谱,并对PM_(2.5)源成分谱特征及其排放颗粒物携带重金属特征进行评估.结果表明:①燃煤电厂PM_(2.5)源成分谱的标识组分包括Si、Cl-和SO42-,其质量分数分别为15. 2%、9. 3%和7. 8%;与燃煤电厂相比,供热锅炉排放的PM_(2.5)中w(OC)偏高、w(SO42-)偏低;生物质锅炉排放的主要组分有K、Cl-和OC等,其质量分数分别为7. 4%、13. 3%和8. 6%;钢铁(烧结)行业PM_(2.5)源成分谱中w(Ca)、w(Fe)和w(Cl-)较高; SO42-和Ca为玻璃行业PM_(2.5)源成分谱的主要组分,其质量分数分别为20. 6%、8. 2%;垃圾处理行业重金属质量分数最高,其主要组分为Cl-和SO42-.②CD (coefficient of divergence,分歧系数)计算结果表明,各源成分谱有一定相异性(CD范围为0. 53~0. 70),其中生物质锅炉与垃圾处理行业PM_(2.5)源成分谱差异(CD为0. 70)最大.③各典型工业排放PM_(2.5)所携带重金属特征显示,垃圾处理行业排放PM_(2.5)中的重金属质量分数(2. 3%)最高,燃煤电厂、供热锅炉、生物质锅炉和玻璃行业排放的重金属中Cr、Ni和Cu相对质量分数较高,钢铁行业和垃圾处理行业排放的重金属中Pb相对质量分数较高.研究显示,所构建的烟台市各典型工业排放PM_(2.5)源成分谱特征鲜明,能够反映各行业PM_(2.5)排放特征.
        Due to the lack of local source profiles in Yantai City,as well as the requirements of environmental management and source apportionment for particulate matter,PM_(2.5) samples from six typical industries were collected. After resuspension by NK-ZXF,six source profiles(coal-fired power plants,heating boilers,biomass boilers,steel industry(sintering),glass industry and refuse processing plants) were established. Besides,the characteristics of trace heavy metals in aerosols were evaluated. The main conclusions were described as follows:(1) The marked components of the power plant profile included Si(15. 2%),Cl-(9. 3%) and SO42-(7. 8%).w(OC) in heating boiler source was higher than that in the power plants,while w(SO42-) was relatively low; The main components of biomass boilers included K(7. 4%),Cl-(13. 3%) and OC(8. 6%),etc. w(Ca),w(Fe) and w(Cl-) in the source profile of steel industry(sintering) were higher. Meanwhile,SO42-(20. 6%) and Ca(8. 2%) were the main components in the glass industry source.The mass fraction of the total heavy metals was the highest in the refuse processing plants among all source profiles.(2) Coefficient of divergence(CD) of source profiles were sufficiently diverse(CD = 0. 53-0. 70),in which the difference between biomass boilers and the refuse processing plants was the largest(CD = 0. 70).(3) The trace heavy metal mass contribution to PM_(2.5) in refuse processing plant source was the highest(2. 3%); In terms of relative contents,Cr,Ni and Cu were relatively high in the source profiles of coal-fired power plants,heating boilers,biomass boilers and glass industry. On the other hand,the Pb contents were relatively high in steel industry and waste disposal industry. In conclusion,the source profiles were established completely,which could reflect distinctions of various industries.
引文
[1] STANEK L W,SACKS J D,DUTTON S J,et al.Attributing health effects to apportioned components and sources of particulate matter:an evaluation of collective results[J]. Atmospheric Environment,2011,45(32):5655-5663.
    [2] HENSCHEL S,ATKINSON R,ZEKA A,et al. Air pollution interventions and their impact on public health[J]. International Journal of Public Health,2012,57(5):757-768.
    [3]朱坦,冯银厂.大气颗粒物来源解析原理、技术及应用[M].北京:科学出版社,2012:12-13.
    [4] WATSON J G,CHOW J C,PACE T G. Chemical mass balance[M]. Houston:Receptor Modeling for Air Quality Management,1991:83-116.
    [5] CHOW J C,WATSON J G. Review of PM2. 5and PM10apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model[J]. Energy&Fuels,2002,16(2):222-260.
    [6] FINE P M,CASS G R,SIMONEIT B R T.Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the midwestern and western United States[J].Environmental Engineering Science,2004,36(21):387-409.
    [7] CHEN L W A,WATSON J G,CHOW J C,et al. Chemical mass balance source apportionment for combined PM2. 5,measurements from U. S. non-urban and urban long-term networks[J].Atmospheric Environment,2012,51(38):4908-4918.
    [8] CHEN Pulong, WANG Tijian, LU Xiaobo, et al. Source apportionment of size-fractionated particles during the 2013 Asian Youth Games and the 2014 Youth Olympic Games in Nanjing,China[J].Science of the Total Environment,2017,579:860-870.
    [9] WANG Rong,TAO Shu,WANG Wentao,et al. Black carbon emissions in China from 1949 to 2050[J]. Environmental Science&Technology,2012,46(14):7595-603.
    [10]刘亚勇,张文杰,白志鹏,等.我国典型燃煤源和工业过程源排放PM2. 5成分谱特征[J].环境科学研究,2017,30(12):1859-1868.LIU Yayong,ZHANG Wenjie,BAI Zhipeng,et al.Characteristics of PM2. 5chemical source profiles of coal combustion and industrial process in China[J].Research of Environmental Sciences,2017,30(12):1859-1868.
    [11] CHOW J C,WATSON J G,KUHNS H,et al. Source profiles for industrial,mobile,and area sources in the big bend regional aerosol visibility and observational study[J]. Chemosphere,2004,54(2):185-208.
    [12] SOFILIC'T,RASTOVCˇAN-MIOCˇA,CERJAN-STEFANOVIC'Sˇ,et al. Characterization of steel mill electric-arc furnace dust[J].Journal of Hazardous Materials,2004,109(1):59-70.
    [13] KONG Shaofei,LU Bing,BAI Zhipeng,et al. Potential threat of heavy metals in resuspended dusts on building surfaces in oilfield city[J].Atmospheric Environment,2011,45(25):4192-4204.
    [14] FANG Wenxiong,YANG Yichen,XU Zhenming. PM10and PM2. 5and health risk assessment for heavy metals in a typical factory for cathode ray tube television recycling[J]. Environmental Science&Technology,2013,47(21):12469-12476.
    [15] FANG Gourcheng,ZHENG Yucheng.Diurnal ambient air particles,metallic elements dry deposition,concentrations study during year of 2012-2013 at a traffic site[J].Atmospheric Environment,2014,88(5):39-46.
    [16]彭杏,丁净,史国良,等.呼和浩特市源成分谱特征研究[J].环境污染与防治,2016,38(9):57-61.PENG Xing,DING Jing,SHI Guoliang,et al. Study on the characteristics of source profiles in Hohhot[J]. Environmental Pollution&Control,2016,38(9):57-61.
    [17]郑玫,张延君,闫才青,等.上海PM2. 5工业源谱的建立[J].中国环境科学,2013,33(8):1354-1359.ZHENG Mei,ZHANG Yanjun,YAN Caiqing,et al. Establishing PM2. 5industrial source profiles in Shanghai[J]. China Environmental Science,2013,33(8):1354-1359.
    [18] SHI Guoliang,LI Xiang,FENG Yinchang,et al. Combined source apportionment,using positive matrix factorization-chemical mass balance and principal component analysis/multiple linear regression:chemical mass balance models[J]. Atmospheric Environment,2009,43(18):2929-2937.
    [19] BI Xiaohui,FENG Yinchang, WU Jianhui, et al. Source apportionment of PM in six cities of northern China[J].Atmospheric Environment,2007,41(5):903-912.
    [20] KONG Shaofei,HAN Bin,BAI Zhipeng,et al.Receptor modeling of PM2. 5,PM10and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin,China[J]. Science of the Total Environment,2010,408(20):4681-4694.
    [21] WU Lin,FENG Yinchang,WU Jianhui,et al. Secondary organic carbon quantification and source apportionment of PM10in Kaifeng,China[J]. Journal of Environmental Sciences,2009,21(10):1353-1362.
    [22]温杰,杨佳美,李蒲,等.我国典型钢铁行业主要工艺环节排放颗粒物源成分谱特征[J].环境科学,2018,39(11):1-8.WEN Jie,YANG Jiamei,LI Pu,et al. Chemical source profiles of PM emitted from the main processes of the iron and steel industry in China[J].Environmental Science,2018,39(11):1-8.
    [23]刀谞,张霖琳,王超,等.京津冀冬季与夏季PM2. 5/PM10及其水溶性离子组分区域性污染特征分析[J].环境化学,2015,34(1):60-69.DAO Xu,ZHANG Linlin,WANG Chao,et al. Characteristics of mass and ionic compounds of atmospheric particles in winter and summer of Beijing-Tianjin-Hebei Area,China[J]. Environmental Chemistry,2015,34(1):60-69.
    [24]马召辉,梁云平,张健,等.北京市典型排放源PM2. 5成分谱研究[J].环境科学学报,2015,35(12):4043-4052.MA Zhaohui,LIANG Yunping,ZHANG Jian,et al.PM2. 5profiles of typical sources in Beijing[J].Acta Scientiae Circumstantiae,2015,35(12):4043-4052.
    [25]李松,郎建垒,程水源,等.典型固定燃烧源颗粒物成分谱特征研究[J].安全与环境学报,2016,16(5):312-319.LI Song,LANG Jianlei,CHENG Shuiyuan,et al. Analysis of the profiles'characteristic features of the particulate matters in regard to the stationary coal combustion sources[J]. Journal of Safety and Environment,2016,16(5):312-319.
    [26] LIU P,ZHANG C,XUE C,et al.The contribution of residential coal combustion to atmospheric PM2. 5in the North China during winter[J].Atmospheric Chemistry&Physics,2017,17(18):1-37.
    [27]王书肖,赵秀娟,李兴华,等.工业燃煤链条炉细粒子排放特征研究[J].环境科学,2009,30(4):963-968.WANG Shuxiao,ZHAO Xiujuan,LI Xinghua,et al. Emission characteristics of fine particles from grate firing boilers[J].Environmental Science,2009,30(4):963-968.
    [28]周新刚,刘志超,路春美,等.燃煤电厂锅炉飞灰含碳量影响因素分析及对策[J].节能,2005(9):45-47.
    [29] ZHANG X Y,KONDRAGUNTA S,SCHMIDT C,et al. Near real time monitoring of biomass burning particulate emissions(PM2. 5)across contiguous United States using multiple satellite instruments[J].Atmospheric Environment,2008,42(29):6959-6972.
    [30]马彤,陈家宝,韦进进,等.南宁市生物质锅炉排放的颗粒物中碳组分特征[J].中国环境科学,2017,37(1):21-26.MA Tong,CHEN Jiabao,WEI Jinjin,et al. Characteristics of carbonaceous components in particulate exhausted from biomass boilers in Nanning[J]. China Environmental Science,2017,37(1):21-26.
    [31] TURN S Q,JENKINS B M,CHOW J C,et al. Elemental characterization of particulate matter emitted from biomass burning:wind tunnel derived source profiles for herbaceous and wood fuels[J]. Journal of Geophysical Research Atmospheres,1997,102(S3):3683-3699.
    [32]孙英明,吴建会,马咸,等.烧结工艺颗粒物中水溶性离子排放特性分析[J].中国环境科学,2016,36(8):2270-2274.SUN Yingming, WU Jianhui, MA Xian, et al. Emission characteristics of water-soluble ions in the particulate matters from sintering process[J]. China Environmental Science,2016,36(8):2270-2274.
    [33] ZHAN G,GUO Z.Basic properties of sintering dust from iron and steel plant and potassium recovery[J]. Acta Scientiae Circumstantiae,2013,25(6):1226-1234.
    [34] GUO Yangyang,GAO Xiang,ZHU Tingyu,et al.Chemical profiles of PM emitted from the iron and steel industry in northern China[J].Atmospheric Environment,2017,150:187-197.
    [35]刘晓宇.典型固定燃烧源颗粒物排放特征研究[D].北京:中国环境科学研究院,2007:1-91.
    [36] WONGPHATARAKUL V,FRIEDLANDER S K,PINTO J P. A comparative study of PM2. 5,ambient aerosol chemical databases[J].Journal of Aerosol Science,1998,29(S24):115-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700