用户名: 密码: 验证码:
地面湿度对雷暴云电过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Relative Humidity on Electrification and Lightning Discharges in Thunderstorms
  • 作者:李春笋 ; 谭涌波 ; 师正 ; 王艺儒
  • 英文作者:LI Chun-sun;TAN Yong-bo;SHI Zheng;WANG Yi-ru;Key Laboratory of Meteorological Disaster,Ministry of Education ( KLME) ,Joint International Research Laboratory of Climate and Environment Change ( ILCEC) ,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters ( CIC-FEMD) ,Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science & Technology;
  • 关键词:相对湿度 ; 起电率 ; 电荷结构 ; 闪电放电
  • 英文关键词:relative humidity;;charging rate;;charge structure;;lightning discharges
  • 中文刊名:科学技术与工程
  • 英文刊名:Science Technology and Engineering
  • 机构:南京信息工程大学气象灾害教育部重点实验室气候与环境变化国际合作联合实验室气象灾害预报预警与评估协同创新中心中国气象局气溶胶与云降水重点开放实验室;
  • 出版日期:2019-09-08
  • 出版单位:科学技术与工程
  • 年:2019
  • 期:25
  • 基金:国家自然科学基金(41805002);; 江苏省自然科学基金(BK20180808);; 南京信息工程大学人才启动基金(2016r042);; 江苏省高等学校自然科学研究项目(18KJB170010)资助
  • 语种:中文;
  • 页:43-52
  • 页数:10
  • CN:11-4688/T
  • ISSN:1671-1815
  • 分类号:P427.3;P446
摘要
分析了南京地区2002~2011年(共10年)闪电和地面相对湿度的卫星观测资料,分析表明:闪电密度与相对湿度呈正相关。为了进一步研究相对湿度对雷暴云起电和放电的影响,采用二维雷暴云起、放电数值模式进行敏感性试验。结果表明:随着相对湿度的增大,云滴数目增多,上升风速增强;当相对湿度增加时,较大的上升气流和云水含量有助于产生更大尺寸的冰晶和霰粒子;较大的云滴、霰和冰晶通过非感应起电和感应起电机制促进电荷分离;当相对湿度从60%增加到90%时,总闪数增加,并且只有当相对湿度高达90%时,才能产生地闪。整体而言,相对湿度越大,对流活动更快更强,促进了雷暴云初始起电和放电。
        Ten-year measurements of lightning and relative humidity from 2002 to 2011 have been analyzed in the Nanjing city,China. Statistical analysis shows the lightning density is positively correlated to relative humidity during this period. To further investigate the effect of relative humidity on electrification and lightning discharges in thunderstorms,a two-dimensional cumulus model incorporating dynamics,microphysics,and thunderstorm electrification mechanisms was used to present a sensitive study. The results show that the higher relative humidity in surface leads to more cloud droplet and stronger updraft. Greater updraft and cloud water content primarily contribute to stronger ice crystal and graupel particles production with increasing relative humidity. A greater formation of cloud droplet,graupel and ice crystal result in increasing charge separation via non-inductive and inductive mechanism. The total lightning flashes increase as the relative humidity increase from 60% to 90%,and only tests with high relative humidity of 90% can produce negative cloud to ground( CG) flashes and positive CG flashes. In general,the increase of relative humidity condition generally leads to a quicker and stronger convection,which results in earlier electrification and lightning discharges in thunderstorm.
引文
1 Li G H,Wang Y,Zhang R.Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction[J].Journal of Geophysical Research Atmospheres,2008,113:D15211
    2 Wang C.A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration:1.dynamics and microphysics[J].Journal of Geophysical Research:Atmospheres,2005,110:D21211
    3胡志晋,何观芳.积雨云微物理过程的数值模式(一)微物理模式[J].气象学报,1987,45(4):467-484Hu Zhijin,He Guanfang.Numerical simulations of cumulonimbus dynamic process I:microphysical model[J].Acta Meteorological Sinica,1987,45(4):467-483
    4 Sun A,Chun H Y,Baik J J,et al.Influence of electrification on microphysical and dynamical processes in a numerically simulated thunderstorm[J].Journal of Applied Meteorology,2002,41:1112-1127
    5 Cooper W A.A method of detecting contact ice nuclei using filter samples[C]//Eighth International Conference on Cloud Physics.Clermont-Ferrand,1980:665-668
    6 Pruppacher H R,Klett J D,Wang P K.Microphysics of clouds and precipitation[M].Dordrecht,Netherlands:Kluwer Academic Publishers,1997
    7 K9hler H.The nucleus in and the growth of hygroscopic droplets[J].Translations of Faraday Society,1936,32:1152-1161
    8 Nakajima T,Higurashi A,Kawamoto K,et al.A possible correlation between satellite-derived cloud and aerosol microphysical parameters[J].Geophysical Research Letters,2001,28(7):1171-1174
    9 Feingold G,Eberhard W L,Veron D E,et al.First measurements of the Twomey indirect effect using ground based remote sensors[J].Geophysical Research Letters,2003,30(6):1287-1290
    10 Khain A,Roseenfeld D,Pokrovsky A.Aerosol impact on the dynamics and microphysics of deep convective clouds[J].Quarterly Journal of the Royal Meteorological Society,2005,131(611):2639-2663
    11 Rosenfeld D,Lohmann U,Raga G B,et al.Flood or drought:how do aerosols affect precipitation[J].Science,2008,321(5894):1309-1313
    12 Khain A P,Benmoshe N,Pokrovsky A.Factors determining the impact of aerosols on surface precipitation from clouds:an attempt at classification[J].Journal of the Atmospheric Sciences,2008,65(6):1721-1748
    13 Fan J,Leung L R,Rosenfeld D,et al.Effects of cloud condensation nuclei and ice nucleating particles on precipitation process and supercooled liquid in mixed-phase orographic clouds[J].Atmospheric Chemistry&Physics,2017,17(2):1017-1035
    14 Fan J,Zhang R,Li G,et al.Effects of aerosols and relative humidity on cumulus clouds[J].Journal of Geophysical Research,2007,112(D14):D14204
    15 Saleeby S M,Cotton W R,Lowenthal D,et al.Aerosol impacts on the microphysical growth processes of orographic snowfall[J].Journal of Applied Meteorology&Climatology,2013,52(4):834-852
    16 CarrióG G,Cotton W R.On the buffering of CCN impacts on wintertime orographic clouds:an idealized examination[J].Atmospheric Research,2014,137:136-144
    17 Zhao P G,Yin Y,Xiao H.Role of water vapor content in the effects of aerosol on the electrification of thunderstorms:a numerical Study[J].Atmosphere,2016,7(10):137-151
    18 Williams E,Sátori G.Lightning,thermodynamic and hydrological comparison of the two tropical continental chimneys[J].Journal of Atmospheric and Solar-terrestrial Physics,2004,66(13-66):1213-1231
    19熊亚军,郄秀书,周筠珺,等.区域闪电活动对地面相对湿度的响应[J].地球物理学报,2006,49(2):311-318Xiong Yajun,Qie Xiushu,Zhou Yunjun.Regional responses of lightning activities to relative humidity of the surface[J].Chinese Journal of Geophysics,2006,49(2):311-318
    20 Rosenfeld D.TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall[J].Geophysical Research Letters,1999,26(20),3105-3108
    21 Petersen W A,Rutledge S A.Regional variability in tropical convection:observations from TRMM[J].Journal of Climate,2001,14(17):3566-3586
    22 Cifelli R,Petersen W A,Carey L D,et al.Radar observations of the kinematic,microphysical,and precipitation characteristics of two MCSs in TRMM LBA[J].Journal of Geophysical Research:Atmospheres,2002,107:D20
    23 Lawrence A,Warren S J,Almaini O.The UKIRT infrared deep sky survey(UKIDSS)[J].Monthly Notices of the Royal Astronomical Society,2007,379(4):1599-1617
    24 Dowdy A J,Mills G A.Atmospheric and fuel moisture characteristics associated with lightning-attributed fires[J].Journal of Applied Meteorology and Climatology,2007,51(11):2025-2037
    25谭涌波,梁忠武,师正,等.雷暴云底部正电荷区对闪电类型影响的数值模拟[J].中国科学:地球科学,2014,57(9):2125-2134Tan Yongbo,Liang Zhongwu,Shi Zheng,et al.Numerical simulation of the effect of lower positive charge region in thunderstorms on different types of lightning[J].Science China:Earth Sciences,2014,57(9):2125-2134
    26 Tan Y,Tao S,Liang Z,et al.Numerical study on relationship between lightning types and distribution of space charge and electric potential[J].Journal of Geophysical Research Atmospheres,2014,119(2):1003-1014
    27 Qie X S,Zhang T L,Chen C P,et al.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J].Geophysical Research Letters,2005,32(5):L05814
    28 Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms[J].Journal of the Atmospheric Science,1978,35(8):1536-1548
    29 Gardiner B,Lamb D,Pitter R L,et al.Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm[J].Journal of Geophysical Research Atmospheres,1985,90(D4):6079-6086
    30 Jayaratne E R,Saunders C P R,Hallett J.Laboratory studies of the charging of soft-hail during ice crystal interactions[J].Quarterly Journal of the Royal Meteorological Society,1983,109(461):609-630
    31 Saunders C P R,Keith W D,Mitzeva R P.The effect of liquid water on thunderstorm charging[J].Journal of Geophysical Research Atmospheres,1991,96(D6):11007-11017
    32 Brooks I M,Saunders C P R,Mitzeva R,et al.The effect on thunderstorm charging of the rate of rime accretion by graupel[J].Atmospheric Research,1997,43(3):277-295
    33 Saunders C P R,Peck S L.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions[J].Journal of Geophysical Research:Atmospheres,1998,103(D12):13949-13956
    34郭凤霞,陆干沂,吴鑫,等.强雷暴中正地闪发生的条件[J].中国科学:地球科学,2016,59(7):1401-1413Guo Fengxia,Lu Ganyi,Wu Xin,et al.Occurrence conditions of positive cloud-to-ground flashes in severe thunderstorms[J].Science China:Earth Sciences,2016,59(7):1401-1413
    35 Tan Y B,Peng L,Shi Z.Lightning flash density in relation to aerosol over Nanjing(China)[J].Atmospheric Research,2016,174(174-175):1-8
    36 Shi Z,Tan Y B,Tang H Q,et al.Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency[J].Atmospheric Research,2015,164:131-141
    37 Mossop S C.Production of secondary ice particles during the growth of graupel by riming[J].Quarterly Journal of the Royal Meteorological Society,1976,102(431):25-44
    38 Ziegler C L,Macgorman D R,Dye J E,et al.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm[J].Journal of Geophysical Research:Atmospheres,1991,96(D7):12833-12855
    39 Mansell E R,Macgorman D R,Ziegler C L,et al.Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J].Journal of Geophysical Research:Atmospheres,2005,110(D12):1545-1555
    40谭涌波.闪电放电与雷暴云电荷、电位分布相互关系的数值模似[D].合肥:中国科技大学,2006Tan Yongbo.Numerical simulation of the relationship of the lightning discharge with the space charge and potential distribution in thundercloud[D].Hefei:University of Science and Technology of China,2006
    41 Coleman L M,Marshall T C,Stolzenburg M,et al.Effects of charge and electrostatic potential on lightning propagation[J].Journal of Geophysical Research Atmospheres,2003,108(D9):1601-1612
    42 Tan Y,Tao S,Zhu B.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning[J].Geophysical Research Letters,2006,33(9):L09809
    43 Tao S,Tan Y,Zhu B,et al.Fine-resolution simulation of cloud-toground lightning and thundercloud charge transfer[J].Atmospheric Research,2009,91(2-4):360-370
    44 Shi Z,Tang H Q,Tan Y B.Effects of the inductive charging on the electrification and lightning discharges in thunderstorms[J].Terrestrial,Atmospheric and Oceanic Sciences,2016,27(2):241-251
    45 Steiger S M,Orville R E,Huffines G.Cloud-to-ground lightning characteristics over Houston,Texas:1989-2000[J].Journal of Geophysical Research:Atmospheres,2002,107(D11):ACL2
    46 Naccarato K P,Pinto Jr O,Pinto I R C A.Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil[J].Geophysical Research Letters,2003,30(13):1674-1677
    47 Kar S K,Liou Y A,Ha K J.Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea[J].Atmospheric Research,2009,92(1):80-87
    48 Yuan T,Remer L A,Pickering K E,et al.Observational evidence of aerosol enhancement of lightning activity and convective invigoration[J].Geophysical Research Letters,2011,38(4):L04701
    49 Mansell E R,Ziegler C L.Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model[J].Journal of the Atmospheric Sciences,2013,70(7):2032-2050
    50谭涌波,马肖,向春燕,等.气溶胶对雷暴云电过程影响的数值模拟研究[J].地球物理学报,2017,60(8):3041-3050Tan Yongbo,Ma Xiao,Xiang Chunyan,et al.A numerical study of the effects of aerosol on electrification and lightning discharges during thunderstorms[J].Chinese Journal of Geophysics,2017,60(8):3041-3050
    51杜赛,谭涌波,汪然,等.中国不同地区闪电活动和气溶胶的相关性[J].科学技术与工程,2018,18(6):22-30Du Sai,Tan Yongbo,Wang Ran,et al.Lightning and aerosol correlation in different regions of China[J].Science Technology and Engineering,2018,18(6):22-30
    52 Williams E,Zhang R,Rydock J.Mixed phase microphysics and cloud electrification[J].Journal of the Atmospheric Sciences,1991,48(19):2195-2203
    53曾凡辉,郭凤霞,廉纯皓,等.中国内陆高原雷暴云底部正电荷区的形成机制[J].科学技术与工程,2019,19(2):25-33Zeng Fanhui,Guo Fengxia,Lian Chunhao,et al.The formation mechanism of the lower positive charge center of thunderstorm in the inland plateau of China[J].Science Technology and Engineering,2019,19(2):25-33
    54 Nag A,Rakov V A.Some inferences on the role of lower positive charge region in facilitating different types of lightning[J].Geophysical Research Letters,2009,36(5):L05815

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700