用户名: 密码: 验证码:
基于退极化信道的量子密钥分配协议安全性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Security performance analysis of quantum key distribution protocol based on depolarization channel
  • 作者:张梓平 ; 刘国军 ; 陆旭 ; 黄兴 ; 刘云
  • 英文作者:ZHANG Ziping;LIU Guojun;LU Xu;HUANG Xing;LIU Yun;Global Energy Interconnection Research Institute Co.,Ltd.;Information Communication Branch,State Grid Eastern Inner Mongolia Electric Power Co.,Ltd.;Information Communication Branch,State Grid Liaoning Electric Power Co.,Ltd.;Anhui Asky Quantum Technology Co.,Ltd.;
  • 关键词:量子光学 ; 量子密钥分配 ; 退极化信道 ; 安全密钥率
  • 英文关键词:quantum optics;;quantum key distribution;;depolarizing channel;;secure key rate
  • 中文刊名:量子电子学报
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:全球能源互联网研究院有限公司;国网内蒙古东部电力有限公司信息通信分公司;国网辽宁省电力有限公司信息通信分公司;安徽问天量子科技股份有限公司;
  • 出版日期:2019-07-15
  • 出版单位:量子电子学报
  • 年:2019
  • 期:04
  • 基金:国家电网有限公司科技项目,SGRIXTKJ[2017]655~~
  • 语种:中文;
  • 页:82-88
  • 页数:7
  • CN:34-1163/TN
  • ISSN:1007-5461
  • 分类号:TN918;O413
摘要
量子密钥分配协议的安全性主要是指在一定信道条件下协议所能支持的最高安全密钥生成率,而退极化信道则是量子信息理论中一种常用的信道模型,该模型可以有效刻画量子态在量子信道传输中的扰动。利用量子信息论方法推导并模拟了退极化信道条件下BB84协议与设备无关协议的安全性。对于给定的退极化信道参数和信道衰减参数,进一步结合诱骗态方案给出了两种协议在不同信道传输距离下的安全密钥率。该研究结果可用于理论模拟在长距离量子密钥分配条件下的安全密钥生成率,为进一步的安全性分析和实验实现建立了理论基础。
        The security performance of quantum key distribution protocol mainly refers to the maximum secure key generation rate that the protocol can support under certain channel conditions.Depolarization channel is a common channel model in quantum information theory,which can effectively illustrate the disturbance of quantum states transmission in quantum channel.The security performance of BB84 protocol and device-independent protocol in depolarization channel is deduced and simulated by using quantum information theory.For the given depolarization quantum channel parameters and channel attenuation parameters,the security key rates of the two protocols under different channel transmission distances are given in combination with the decoy state scheme.The results can be used to theoretically simulate the security key generation rate under the condition of long-distance quantum key distribution,which establishes the theoretical basis for further security analysis and experimental implementation.
引文
[1]Bennett C H,Brassard G.Quantum cryptography:Public-key distribution and coin tossing[C].Proceedings of IEEE International Conference on Computers,Systems and Signal Processing,Bangalore,India.New York:IEEE,1984:175-179.
    [2]Lo H K,Chau H F.Unconditional security of quantum key distribution over arbitrarily long distances[J].Science,1999,283:2050-2056.
    [3]Shor P,Preskill J.Simple proof of security of the BB84 quantum key distribution protocol[J].Physical Review Letters, 2000,85:441-444.
    [4]Renner R.Security of quantum key distribution[J].International Journal of Quantum Information,2008,6(1):1-12 7.
    [5]Kraus B,Gisin N,Renner R.Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication[J].Physical Review Letters,2005,95:080501.
    [6]Renner R,Gisin N,Kraus B.Information-theoretic security proof for quantum-key-distribution protocols[J].Physical Review A,2005,72:012332.
    [7]Grosshans F,Grangier P.Continuous variable quantum cryptography using coherent states[J].Physical Review Letters,2002,88(5):057902.
    [8]Inoue K,Waks E,Yamamoto Y.Differential phase shift quantum key distribution[J].Physical Review Letters,2002,89(3):037902.
    [9]Sasaki T,Yamamoto Y,Koashi M.Practical quantum key distribution protocol without monitoring signal disturbance[J].Nature,2014,509(7501):475-478.
    [10]Ekert A K.Quantum cryptography based on Bell's theorem[J].Physical Review Letters,1991,67:661-663.
    [11]Barrett J,Hardy L,Kent A.No signaling and quantum key distribution[J].Physical Review Letters, 2005,95:010503.
    [12]Acin A,Brunner N,Gisin N,et al.Device-independent security of quantum cryptography against collective attacks[J].Physical Review Letters, 2007,98:230501.
    [13]Arnon-Friedman R,Dupuis F,Fawzi O,et al. Practical device-independent quantum cryptography via entropy accumulation[J].Nature Communications,2018,9(1):459.
    [14]Lo H K,Curty M,Qi B.Measurement-device-independent quantum key distribution[J].Physical Review Letters,2012,108(13):130503.
    [15]Lucamarini M,Yuan Z L,Dynes J F,et al.Overcoming the rate distance limit of quantum key distribution without quantum repeaters[J].Nature,2018,557(7705):400-403.
    [16]Hwang W Y.Quantum key distribution with high loss:Toward global secure communication[J].Physical Review Letters,2003,91(5):057901.
    [17]Wang X B.Beating the photon-number-splitting attack in practical quantum cryptography[J].Physical Review Letters,2005,94(23):230503.
    [18]Lo H K,Ma X,Chen K.Decoy state quantum key distribution[J].Physical Review Letters,2005,94(23):230504.
    [19]Wang J D,Zhang Z M.Unconditional security of quantum key distribution based on practical devices[J].Chinese Journal of Quantum Electronics(量子电子学报)2014,31(4):449-458(in Chinese).
    [20]Mao Q P,Zhao S M,Wang L,et al.Measurement-device-independent quantum key distribution based on wavelength division multiplexing technology[J].Chinese Journal of Quantum Electronics(量子电子学报),2017,34(1):46-53(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700