用户名: 密码: 验证码:
3株嗜(耐)盐菌株不同组合对盐碱土壤不同粒径团聚体含量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Combinations of Three Salt-tolerant Strains on the Content of Saline-alkali Soil Aggregates with Different Particle Sizes
  • 作者:曹力毅 ; 毕江涛 ; 肖国举
  • 英文作者:CAO Liyi;BI Jiangtao;XIAO Guoju;College of Agriculture,Ningxia University;Institute of Environmental Engineering,Ningxia University;
  • 关键词:达板喜盐芽孢杆菌 ; 盐单胞细菌 ; 枯草芽孢杆菌 ; 盐碱地 ; 土壤团聚体
  • 英文关键词:Halobacillus dabanensis;;Halomonas meridiana;;Bacillus subtilis;;Saline-alkaline soil;;Soil aggregates
  • 中文刊名:河南农业科学
  • 英文刊名:Journal of Henan Agricultural Sciences
  • 机构:宁夏大学农学院;宁夏大学环境工程研究院;
  • 出版日期:2019-07-16 17:02
  • 出版单位:河南农业科学
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划子课题(2016YFCO501302-2)
  • 语种:中文;
  • 页:80-86
  • 页数:7
  • CN:41-1092/S
  • ISSN:1004-3268
  • 分类号:S152
摘要
为揭示微生物改良盐碱地的机制,通过培养皿和盆钵试验,利用湿筛和干筛法分析测定3株嗜(耐)盐菌对盐碱土壤不同粒径团聚体含量的影响。结果表明,培养皿试验培养45 d后,测定不同粒径土壤团聚体含量,盐单胞细菌+枯草芽孢杆菌处理对于提高粒径≥2.00 mm的土壤团聚体含量效果显著(P<0.05);培养90 d后,达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理对于提高粒径≥2.00 mm的土壤团聚体含量效果显著(P<0.05);培养45 d后,达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理对于提高粒径0.25~2.00 mm的土壤团聚体含量效果显著(P<0.05);培养90 d后,达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理显著降低了粒径0.25~2.00 mm的土壤团聚体含量(P<0.05);培养90 d后,除达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理外,其他处理对于降低粒径<0.25 mm的土壤团聚体含量效果均不显著(P>0.05)。盆钵试验干筛法测定不同粒径土壤团聚体含量,培养45、90 d后,达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理对于提高粒径≥2.00 mm的土壤团聚体含量效果显著(P<0.05);培养45 d后,达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理对于提高粒径0.25~2.00 mm的土壤团聚体含量效果显著(P<0.05);培养90 d后,达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理降低了粒径0.25~2.00 mm的土壤团聚体含量,但差异不显著(P>0.05);培养45、90 d后,达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理均降低了粒径<0.25 mm的土壤团聚体含量,且差异显著(P<0.05)。盆钵试验湿筛法测定土壤团聚体含量,培养45 d后,各处理对于提升粒径≥2.00 mm和0.25~2.00 mm土壤团聚体含量以及降低粒径<0.25 mm的土壤团聚体含量效果均不显著(P>0.05);培养90 d后,达板喜盐芽孢杆菌+盐单胞细菌+枯草芽孢杆菌处理对于提升粒径0.25~2.00 mm的土壤团聚体含量效果显著(P<0.05)。由此得出,嗜(耐)盐菌对于不同粒径土壤团聚体的形成具有不同的作用,总体上对于土壤大团聚体的形成促进效果较好,复合菌处理对盐碱地土壤团聚体形成的促进效果整体上优于单株菌。
        For revealing the mechanism of microbial improvement on saline-alkali soil,wet and dry sieving methods were used to determine the effects of 3 strains of salt-tolerant bacteria on content of saline-alkali soil aggregates with different particle sizes through petri dish and pot experiments.The results showed that,for petri incubation of 45 days,soil aggregates contents with different particle sizes were tested,and the treatment of Halomonas meridiana+Bacillus subtilis had a significant effect in increasing soil aggregates content with particle size≥2.00 mm(P<0.05);for 90 days of incubation,the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis had a significant effect in increasing soil aggregates content with particle size≥2.00 mm(P<0.05);for 45 days of inocubation,the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis had a significant effect in increasing soil aggregates content with particle size of 0.25—2.00 mm(P<0.05);for 90 days of inocubation,the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis had a significant effect in reducing soil aggregates content with particle size of 0.25—2.00 mm(P<0.05).For 90 days of incubation,except the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis,the other treatments had no significant effect in reducing soil aggregates content with particle size<0.25 mm(P>0.05).The content of soil aggregates with different particle sizes were tested in pot experiment by dry sieving method.For 45 and 90 days of inocubation,the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis had a significant effect in increasing the soil aggregates content with particle size≥2.00 mm(P<0.05);for 45 days of inocubation,the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis had a significant effect in increasing the soil aggregates content with particle size of 0.25—2.00 mm(P<0.05);for 90 days of inocubation,the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis reduced soil aggregates content with particle size of 0.25—2.00 mm,however the difference was not significant(P>0.05);for 45 and 90 days of inocubation,the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis significantly reduced soil aggregates content with particle size<0.25 mm(P<0.05).Soil aggregates contents were determined in pot experiment by wet sieving method.For 45 days of inocubation,there were no significant effects in improvement of soil aggregates content with particle sizes≥2.00 mm and 0.25—2.00 mm,and in decreasement of soil aggragates content with particle size<0.25 mm of each treatment(P>0.05); for 90 days of inocubation,the treatment of Halobacillus dabanensis+Halomonas meridiana+Bacillus subtilis had significant effect in improvement of soil aggregates content with particle size of 0.25—2.00 mm(P<0.05).Therefore,it is concluded that salt-tolerant bacteria play different roles in the formation of soil aggregates with different particle sizes,in general,they have good promotion effect on the formation of large size of soil aggregates,and the composite bacteria are better than single bacterium in the formation of soil aggregates in saline-alkali soil.
引文
[1] 石元春.盐碱土改良:诊断、管理、改良[M].北京:农业出版社,1986.
    [2] 陈玉林.盐碱地改良模式浅析[J].现代化农业,2011,385(8):9-10.
    [3] 张建锋,张旭东,周金星,等.世界盐碱地资源及其改良利用的基本措施[J].水土保持研究,2005,12(6):28-30,107.
    [4] 王立艳,潘洁,于彩虹,等.天津滨海盐碱地土壤含盐量测定方法的研究[J].天津农业科学,2011,17(5):40-42.
    [5] 田玉福,窦森,张玉广,等.暗管不同埋管间距对苏打草甸碱土的改良效果[J].农业工程学报,2013,29(12):145-153.
    [6] 苟宇波,宋莎莎,何欣燕,等.暗沟对宁夏盐碱地土壤盐分和垂柳生长的影响[J].应用与环境生物学报,2017,23(3):548-554.
    [7] 李秀军,李取生,王志春,等.松嫩平原西部盐碱地特点及合理利用研究[J].农业现代化研究,2002,32(5):361-364.
    [8] 冯玉杰,张巍,陈桥,等.松嫩平原盐碱化草原土壤理化特征及微生物结构分析[J].土壤,2007,39(2):301-305.
    [9] 张强,赵文娟,陈卫峰,等.盐碱地修复与保育研究进展[J].天津农业科学,2018,24(4):65-70.
    [10] 杨华,陈莎莎,冯哲叶,等.土壤微生物与有机物料对盐碱土团聚体形成的影响[J].农业环境科学学报,2017,36(10):2080-2085.
    [11] 魏博娴.中国盐碱土的分布于成因分析[J].水土保持应用技术,2012,2(6):27-28.
    [12] 唐茹,孙钰翔,戴齐,等.土壤团聚体微结构研究方法及进展[J].河南农业科学,2018,47(9):8-15.
    [13] 文倩,关欣.土壤团聚体形成的研究进展[J].干旱区研究,2004,21(4):434-437.
    [14] WANG Q K,WANG S L.Forming and stable mechanism of soil aggregate and influencing factors[J].Chinese Journal of Soil Science,2005,36(3):415-421.
    [15] GUPA V V S R,GERMIDA J J.Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J].Soil Biology and Biochemistry,1988,20(6):777-786.
    [16] SIX J,BOSSUYT H,DEGRYZE S,et al.A history of research on the link between(micro)aggregates,soil biota,and soil organic matter dynamics[J].Soil and Tillage Research,2004,79(1):7-31.
    [17] NIMMO J R,PERKINS K S.Aggregates stability and size distribution [M]//Madison.methods of soil analysis,part 4:Physical Methods.Wisconsin:Soil Science Society of America,Inc.,2002:317-328.
    [18] BRONICK C J,LAL R.Soil structure and management:A review[J].Geoderma,2005,124(1/2):3-22.
    [19] 程丽娟,来航线,李素俭,等.微生物对土壤团聚体形成的影响[J].西北农业大学学报,1994,22(4):93-97.
    [20] MARTIN J P.Decomposition and binding action of polysaccharides in soil[J].Soil Biology & Biochemistry,1971,3(1):33-41.
    [21] 张文平,李昆太,黄林,等.产胞外多糖菌株的筛选及其对土壤团聚体的影响[J].江西农业大学学报,2017,39(4):772-779.
    [22] 周虎,吕贻忠,杨志臣,等.保护性耕作对华北平原土壤团聚体特征的影响[J].中国农业科学,2007,40(9):1973-1979.
    [23] 文倩,赵小蓉,陈焕伟,等.半干旱地区不同土壤团聚体中微生物量碳的分布特征[J].中国农业科学,2004,37(10):1504-1509.
    [24] TISDALL J M,MOADES J M.Organic-matter and water stable aggregates in soils[J].Journal of Soil Science,1982,33(2):141-163.
    [25] WANG Y D,HU N,GE T D,et al.Soil aggregate regulates distribution of carbon,microbial community and enzyme activities after 23-year manure amendment[J].Applied Soil Ecology,2017,111:65-72.
    [26] GUPTA V V S R,GERMIDA J J.Soil aggregation:Influence on microbial biomass and implications for biological processes[J].Soil Biology & Biochemistry,2015,80:A3-A9.
    [27] RABOT E,WIESMEIER M,SCHLUTER S,et al.Soil structure as an indicator of soil functions:A review[J].Geoderma,2018,314:122-137.
    [28] HEIJDEN V D,BARDGETT M G A,STRAALEN V S,et al.The unseen majority:Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J].Ecology Letters,2008,11(3):296-310.
    [29] KIRK J L,BEAUDETTE L A,HART M,et al.Methods of studying soil microbial diversity[J].Journal of Microbiological Methods,2004,58(2):169-188.
    [30] RASHID M I,MUJAWAR L M,SHAHZAD T,et al.Bacteria and fungi can contribute nutrients bioavailability and aggregate formation in degraded soils[J].Microbiological Research,2016,183:26-41.
    [31] HELLIWELL J R,MILLER A J,WHALLEY W R,et al.Quantifying the impact of microbes on soil structural development and behavior in wet soils[J].Soil Biology & Biochemistry,2014,74:138-147.
    [32] BOSSUYT H,DENEF K,SIX J,et al.Influence of microbial populations and residue quality on aggregate stability[J].Applied Soil Ecology,2001,16:195-208.
    [33] 李彦,李廷亮,焦欢,等.保护性耕作对土壤团聚体及微生物特性影响研究概况[J].山西农业科学,2018,46(3):466-470.
    [34] 宋美芳,胡义涛,黄帅,等.长期施钾对水旱轮作系统产量及土壤团聚体钾分布的影响[J].南方农业学报,2018,49(6):1082-1088.
    [35] 李建华,李华,郜春花,等.长期施肥对晋东南矿区复垦土壤团聚体稳定性及有机碳分布的影响[J].华北农学报,2018,33(5):188-194.
    [36] 周蓓蓓,侯亚玲,王全九.枯草芽孢杆菌改良盐碱土过程中水盐运移特征[J].农业工程学报,2018,40(8):104-110.
    [37] 罗欢.芽孢杆菌对植物的促生和耐盐作用及其相关机制的研究[D].南京:南京农业大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700