用户名: 密码: 验证码:
Time series analysis of mantle cycles Part Ⅰ:Periodicities and correlations among seven global isotopic databases
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Time series analysis of mantle cycles Part Ⅰ:Periodicities and correlations among seven global isotopic databases
  • 作者:Stephen ; J.Puetz ; Kent ; C.Condie
  • 英文作者:Stephen J.Puetz;Kent C.Condie;Progressive Science Institute;New Mexico Institute of Mining and Technology;
  • 英文关键词:Zircon;;Database;;Isotope;;Statistical analysis;;Spectral analysis;;Cross correlation
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:Progressive Science Institute;New Mexico Institute of Mining and Technology;
  • 出版日期:2019-07-11
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:04
  • 语种:英文;
  • 页:87-108
  • 页数:22
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P597
摘要
In this study,seven isotopic databases are presented and analyzed to identify mantle and crustal episodes on a global scale by focusing on periodicity ranging from 70 to 200 million years(Myr).The databases are the largest,or among the largest,compiled for each type of data-with an objective of finding some samples from every region of every continent,to make each database as global as conceivably possible.The databases contain zircon Lu/Hf isotopic data,whole-rock Sm/Nd isotopic data,U/Pb detrital zircon ages,U/Pb igneous zircon ages,U/Pb non-zircon ages,whole-rock Re/Os isotopic data,and large igneous province ages.Part I of this study focuses on the periodicities of age histograms and geochemical averages developed from the seven databases,via spectral and cross-correlation analyses.Natural physical cycles often propagate in exact integer multiples of a fundamental cycle,referred to as harmonics.The tests show that harmonic geological cycles of~93.5 and ~187 Myr have persisted throughout terrestrial history,and the cyclicities are statistically significant for U/Pb igneous zircon ages,U/Pb detrital zircon ages,U/Pb zircon-rim ages,large igneous province ages,mean ε_(Hf)(t)for all samples,mean ε_(Hf)(t)values for igneous-only samples,and relative abundance of mafic rocks.Equally important,cross-correlation analyses show these seven time-series are nearly synchronous(±7 Myr)with a model consisting of periodicities of 93.5 and 187 Myr.Additionally,the similarities between peaks in the 93.5 and 187 Myr mantle cycles and terminal ages of established and suspected superchrons provide a framework for predicting and testing superchron periodicity.
        In this study,seven isotopic databases are presented and analyzed to identify mantle and crustal episodes on a global scale by focusing on periodicity ranging from 70 to 200 million years(Myr).The databases are the largest,or among the largest,compiled for each type of data-with an objective of finding some samples from every region of every continent,to make each database as global as conceivably possible.The databases contain zircon Lu/Hf isotopic data,whole-rock Sm/Nd isotopic data,U/Pb detrital zircon ages,U/Pb igneous zircon ages,U/Pb non-zircon ages,whole-rock Re/Os isotopic data,and large igneous province ages.Part I of this study focuses on the periodicities of age histograms and geochemical averages developed from the seven databases,via spectral and cross-correlation analyses.Natural physical cycles often propagate in exact integer multiples of a fundamental cycle,referred to as harmonics.The tests show that harmonic geological cycles of~93.5 and ~187 Myr have persisted throughout terrestrial history,and the cyclicities are statistically significant for U/Pb igneous zircon ages,U/Pb detrital zircon ages,U/Pb zircon-rim ages,large igneous province ages,mean ε_(Hf)(t)for all samples,mean ε_(Hf)(t)values for igneous-only samples,and relative abundance of mafic rocks.Equally important,cross-correlation analyses show these seven time-series are nearly synchronous(±7 Myr)with a model consisting of periodicities of 93.5 and 187 Myr.Additionally,the similarities between peaks in the 93.5 and 187 Myr mantle cycles and terminal ages of established and suspected superchrons provide a framework for predicting and testing superchron periodicity.
引文
Arndt,N.T.,Goldstein,S.L.,198 7.Use and abuse of crust-formation age s.Geology 15,893-895.http s://pubs.geoscienceworld.org/gsa/geology/article-abstract/15/10/893/204191/.
    Belousova,E.A.,Kostitsyn,Y.A.,Griffin,W.L.,Begg,G.C.,O'Reilly,S.Y.,Pearson,N.J.,2010.The growth of the continental crust:constraints from zircon Hf-isotope data.Lithos 119,457-166.https://doi.org/10.1016/j.lithos.2010.07.024.
    Belozerov,V.B.,Ivanov,I.A.,2003.Platform deposition in the West Siberian plate:a kinematic model.Russian Geology and Geophysics 44,750-761.http://sibran.ru/en/j ournals/is sue.php?ID=120376.
    Biggin,A.J.,Steinberger,B.,Aubert,J.,Suttie,N.,Holme,R.,Torsvik,T.H.,van der Meer,D.G.,van Hinsbergen,D.J.J.,2012.Possible links between long-term geomagnetic variations and whole-mantle convection processes.Nature Geoscience 5,526-533.https://doi.org/10.1038/ngeo1521.
    Boulila,S.,Laskar,J.,Haq,B.U.,Galbrun,B.,Hara,N.,2018.Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers.Globaland Planetary Change 165,128-136.https://doi.org/10.1016/j.gloplacha.2018.03.004.
    Bouvier,A.,Vervoort,J.D.,Patchett,P.J.,2008.The Lu-Hf and Sm-Nd isotopic composition of CHUR:constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets.Earth and Planetary Science Letters 273,48-57.https://doi.org/10.1016/j.epsl.2008.06.010.
    Champion,D.C.,2013.Neodymium Depleted Mantle Model Age Map of Australia:Explanatory Notes and User Guide.Record 2013/44.Geoscience Australia,Canberra,p.144.https://doi.org/10.11636/Record.2013.044.
    Champion,D.C.,Cassidy,K.F.,2008.Using geochemistry and isotopic signatures of granites to aid mineral systems studies:an example from the Yilgarn Craton.In:Korsch,R.J.,Barnicoat,A.C.(Eds.),New Perspectives:The Foundations and Future of Australian Exploration.Abstracts for the June 2008 Pmd-CRC Conference.Geoscience Australia,pp.7-16.Record 2008/09.
    Chatfield,C.,2004.The Analysis of Time Series:an Introduction,sixth ed.Chapman and Hall,CRC Press,Boca Raton,Florida.
    Chen,Z.,Lin,W.,Faure,M.,Lepvrier,C.,Vuong,N.V.,Tich,V.V.,2014.Geochronology and isotope analysis of the late paleozoic to mesozoic granitoids from Northeastern Vietnam and implications for the evolution of the South China block.Journal of Asian Earth Sciences 86,131-150.https://doi.org/10.1016/j.jseaes.2013.07.039.
    Condie,K.C.,Arndt,N.,Davaille,A.,Puetz,S.J.,2017.Zircon age peaks:production or preservation of continental crust? Geosphere 13,227-234.https://doi.org/10.1130/ges01361.1.
    Condie,K.C.,Davaille,A.,Aster,R.C.,Arndt,N.,2015.Upstairs-downstairs:supercontinents and large igneous province s,are they related?International Geology Review 57,1341-1348.https://doi.org/10.1080/00206814.2014.963170.
    Condie,K.C.,Puetz,S.J.,Davaille,A.,2018.Episodic crustal production before 2.7 Ga.Precambrian Research 312,16-22.https://doi.org/10.1016/j.precamres.2018.05.005.
    Davaille,A.,Stutzmann,E.,Silveira,G.,Besse,J.,Courtillot,V.,2005.Convective patterns under the Indo-Atlantic<>.Earth and Planetary Science Letters239,233-252.https://doi.org/10.1016/j.epsl.2005.07.024.
    Davie s,G.F.,1988.Ocean bathymetry and mantle convection:1.Large-scale flow and hotspots.Journal of Geophysical Research 93,10467-10480.https://doi.org/10.1029/JB093iB09p 10467.
    Depaolo,D.J.,Wasserburg,G.J.,1976.Nd isotopic variations and petrogenetic models.Geophysical Research Letters 3,249-252.https://doi.org/10.1029/GL003i005p00249.
    Domeier,M.,Magni,V.,Hounslow,M.W.,Torsvik,T.H.,2018.Episodic zircon age spectra mimic fluctuations in subduction.Nature:Scientific Reports 8,17471.https://doi.org/10.1038/s41598-018-35040-z.
    Driscoll,P.,Olson,P.,2011.Superchron cycles driven by variable core heat flow.Geop hysical Re search Letters 522,L09304.https://doi.org/10.1029/2011GL046808.
    Elston,D.P.,Enkin,R.J.,Baker,J.,Kisilevsky,D.K.,2002.Tightening the belt:paleomagnetic-stratigraphic constraints on deposition,correlation,and deformation of the middle proterozoic(ca.1.4 Ga)belt-purcell Supergroup.United States and Canada.GSA Bulletin 114,619-638.https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/114/5/6 19/183865.
    Foster,G.,Kinny,P.,Vance,D.,Prince,C.,Harris,N.,2000.The significance of monazite U-Th-Pb age data in metamorphic assemblages; a combined study ofmonazite and garnet chronometry.Earth and Planetary Science Letters 181.327-340.https://d oi.org/10.1016/S0012-821X(00)00212-0.
    Gallet,Y.,Besse,J.,Krystyn,L,Marcoux,J.,Theveniaut,H.,1992.Magnetostratigraphy of the late Triassic BoliicektasiTepe section(southwestern Turkey):implications for changes in magnetic reversal frequency.Physics of the Earth and Planetary Interiors 73.85-108.https://doi.org/10.1016/0031-9201(92)90109-9.
    Gallet,Y.,Pavlov,V.,Halverson,G.P.,Hulot,G.,2012.Toward constraining the longterm reversing behavior of the geodynamo:a new Maya superchron~1000 Ma ago from the magnetostratigraphy of the Kartochka Formation(southwestern Siberia).Earth and Planetary Science Letters 339-340,1 17-1 26.https://d oi.org/10.1016/j.epsl.2012.04.049.
    Gehrels,G.E.,Valencia,V.A.,Ruiz,J.,2008.Enhanced precision,accuracy,efficiency,and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry.Geochemistry,Geophysics,Geosystems 9,Q03017.https://doi.org/10.1029/2007GC001805.
    Georgiev,N.,Froitzheim,N.,Chemeva,乙,Frei,D.,Grozdev,V.,Jahn-Awe,S.,Nagel,T.J.,2016.Structure and U-Pb zircon geochronology of an Alpine nappe stack telescoped by extensional detachment faulting(Kulidzhik area,Eastern Rhodopes,Bulgaria).International Journal of Earth Sciences 105,1985-2012.https://doi.org/10.1007/s00531-016-1293-4.
    Goldstein,S.J.,Jacobsen,S.B.,1988.Nd and Sr isotopic systematics of river water suspended material:implications for crustal evolution.Earth and Planetary Science Letters 87.249-265.https://doi.org/10.1016/0012-821X(88)90013-1.
    Hardy,B.W.,Jamieson,K.H.,2017.Chapter 42:overcoming biases in processing of time series data about climate.In:Jamies on,K.H.,Kahan,D M.,Scheufele,DA.(Eds.),The Oxford Handbook of the Science of Science Communication.Oxford University Press.
    Hietpas,J.,Samson,S.,Moecher,D.,Schmitt,A.K.,2010.Recovering tectonic events from the sedimentary record:detrital monazite plays in high fidelity.Geology38,167-170.https://doi.org/10.1 1 30/G30265.1.
    Hilgen,F.J.,Hinnov,LA.,Aziz,H.A.,Abels,H.A.,Batenburg,S.,et al.,2015.Stratigraphic continuity and fragmentary sedimentation:the success of cyclostratigraphy as part of integrated stratigraphy.In:Smith,D.G.,Bailey.R.J.,Burgess,P.M.,Fraser,A.J.(Eds.),Strata and Time:Probing the Gaps in Our Understanding,vol.404.Geological Society,London,Special Publications,pp.157-197.https://doi.org/10.1144/SP404.12.
    Hinnov.,LA.,2005.Chapter 4:Earth's orbital parameters and cycle stratigraphy.In:Gradstein,F.M.,Ogg.J.G.,Smith,A.(Eds.),A Geologic Time Scale 2004.Cambridge University Press,NY.
    Horstwood.M.S.A.,Kosler,J.,Gehrels,G.,Jackson,S.E.,McLean,N.M.,et al.,2016.Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology-Uncertainty Propagation,Age Interpretation and Data Reporting.https://doi.org/10.1111/j.1751-908X.2016.00379-x.
    Hounslow,M.W.,Domeier,M.,Biggin,A.J.,2018.Subduction flux modulates the geomagnetic polarity reversal rate.Tectonophysics 742-743,34-49.https://doi.org/10.1016/j.tecto.2018.05.018.
    Isley.A.E.,Abbott,D.H.,2002.Implications of the temporal distribution of high-Mg magmas for mantle plume volcanism through time.The Journal of Geology 110.141-158.https://doi.org/10.1086/338553.
    Irving,E.,Baker,J.,Hamilton,M.,Wynne,P.,2004.Farly Proterozoic geomagnetic field in western Laurentia:implications for paleolatitudes,local rotations and stratigraphy.Precambrian Research 129,251-270.https://doi.org/10.1016/j.precamres.2003.10.002.
    Johnson,H.P.,Van Patten,D.,Tivey,M.,Sager,W.W.,1995.Geomagnetic polarity revers al rate for the Phanerozoic.Geophysical Research Letters 22,231-234.https://d oi.org/10.102 9/94GL0 3051.
    Keller,C.B.,Boehnke,P.,Schoene,B.,2017.Temporal variation in relative zircon abundance throughout Earth history.Geochemical Perspectives Letters 3,179-189.https://doi.org/10.7185/geochemlet.1721.
    Kutterolf,S., Jegen,M.,Mitrovica,J.X.,Kwasnitschka,T.,Freundt,A.,Huybers,P.J.,2013.A detection of Milankovitch frequencies in global volcanic activity.Geology 41,227-230.https://doi.org/10.1130/G33419.1.
    Lakatos.I., 1978.In:Worrall,J.,Currie,G.(Eds.),The Methodology of Scientific Research Programmes:Philosophical Papers,vol.1.Cambridge Unive rsity Pre ss.
    Leng,W.,Zhong,S.J.,2008.Controls on plume heat flux and plume excess temperature.Journal of Geophysical Research 113,B04408.https://doi.org/10.1029/2007jb005155.
    Li,M.,Zhong,S.,Olson,P.,2018.Linking lowermost mantle structure,core-mantle boundary heat flux and mantle plume formation.Physics of the Earth and Planetary Interiors 277,10-29.https://doi.org/10.1016/j.pcpi.2018.01.0 10.
    Lopez,C.,Riquelme,R.,Martinez,F.,Sanchez,C.,Mestre,A.,2018.Zircon U-Pb ge ochronology of the mesozoic to lower cenozoic rocks of the Coastal Cord illera in the Antofagasta region(22°30'-23°00'S):insights to the andean tectonomagmatic evolution.Journal of South American Earth Sciences 87,113-138.https://doi.org/10.1016/j.j sames.2017.11.005.
    McLennan,S.M.,Hemming,S.,1992.Samarium/neodymium elemental and isotopic systematics in sedimentary rocks.Geochimica et Cosmochimica Acta 56,887-898.https://d oi.org/10.101 6/0016-7037(92)90034-G.
    Metropolis,N.,Ulam,S.,1949.Journal of the American Statistical Association 44,335-341.The Monte Carlo Method.https://doi.org/10.1080/01621459.1949.10483310.
    Nance,R.D.,Worsley,T.R.,Moody,J.B.,1988.The supercontinent cycle.Scientific American 259,72-79.https://www.jstor.org/stable/24989160.
    Olson,P.L,Deguen,R.,Hinnov,L.A.,Zhong,S.J.,2013.Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic Physics of the Earth and Planetary Interiors 214,87-103.https://doi.org/10.1016/j.pepi.2012.10.003.
    Olson,P.,Hinnov,L.A.,Driscoll,P.E.,2014.Nonrandom geomagnetic reversal times and geodynamo evolution.Earth and Planetary Science Letters 388,9-17.https://doi.org/10.1016/j.epsl.2013.11.038.
    Parrish,R.R.,1990.U-Pb dating of monazite and its application to geological problems.Canadian Journal of Ea rth Sciences 2 7,1431-1450.https://d oi.org/10.1139/e90-152.
    Parman,S.W.,2015.Time-lapse zirconography:imaging punctuated continental evolution.Geochemical Perspective Letters 1,43-52.https://doi.org/10.7185/geochemlet.1505.
    Pavlov,V.E.,Gallet,Y.,2010.Variations in geomagnetic reversal frequency during the Earth's middle age.Geochemistry,Geophysics,Geosystems 11,Q01Z10.https://d oi.org/10.1029/2 009GC002583.
    Pavlov,V.E.,Gallet,Y.,Petrov,P.Y.,2019.Precambrian Research 320,350-370.A New Siberian Record of the~1.0 Gyr-Old Maya Superchron.https://doi.org/10.1016/j.precamres.2018.1 1.005.
    Popper,K.,1963.Conjectures and Refutations:the Growth of Scientific Knowledge.Routledge&Kegan Paul,London.
    Priestley.M.B.,1988.Non-linear and Non-stationary Time Series Analysis.Academic Press,London.
    Puetz.,S.J.,Borchardt,G., 2015.Quasi-periodic fractal patterns in geomagnetic reversals,geological activity,and astronomical events.Chaos,Solitons&Fractals81,246-2 70.https://doi.org/10.1016/j.chaos.2015.09.029.
    Puetz,S.J.,Condie,K.C.,Pisarevsky,S.,Davaille,A.,Schwarz,C.J.,Ganade,C.E.,2017.Quantifying the evolution of the continental and oceanic crust.Earth-Science Revie ws 164,63-8 3.https://doi.org/10.1016/j.earscirev.2016.10.011.
    Puetz,S.J.,Ganade,C.E.,Zimmermann,U.,Borchardt,G.,2018.Statistical analyses of global U/Pb database 201 7.Ceoscience Frontiers 9,121-145.https://doi.org/10.1016/j.gsf.2017.06.001.
    Puetz,S.J.,2018.A relational database of global U-Pb ages.Geoscience Frontiers 9,87 7-891.https://doi.org/10.1016/j.gsf.2017.12.004.
    Roberts.N.M.W.,Spencer,C.J.,2015.The zircon archive of continent formation through time.Geological Society,London,Special Publications 389,197-225.https://d oi.org/10.1144/SP389.14.
    Rubatto,D.,Williams,I.,Buick,1.,2001.Zircon and monazite respons e to prograde metamorphism in the Reynolds Range,central Australia.Contributions to Mineralogy and Petrology 140,458-468.https://doi.org/10.1007/PL00007673.
    Rudnick,R.L,Walker,R.J.,2009.Interpreting ages from Re—Os isotopes in peridotites.Lithos 112,1083-1095.https://doi.org/10.1016/j.lithos.2009.04.042.
    Scheel,H.,Scholtes,S.,2000.Mathematical programs with complementarity constraints:stationarity,optimality,and sensitivity.Mathematics of Operations Research 25,1-22.https://doi.org/10.1287/moor.25.1.1.1521 3.
    Schoene,B.,Condon,D.J.,Morgan,L,McLean,N.,2013.Precision and accuracy in geochronology.Elements 9,19-24.https://doi.org/10.2113/gselements.9.1.19.
    Schulz,M.,Mudelsee,M.,2002.REDFIT:estimating red-noise spectra directly from unevenly spaced paleoclimatic time-series.Computers&Geosciences 28,421-426.https://doi.org/10.1016/S0098-30 04(01)0 0044-9.
    Shannon,C.E.,1949.Communication in the pres ence of noise.Proceedings of the Institute of Radio Engineers 37,10-21.In:https://doi.org/10.1109/JRPROC.1949.232969.
    Stoica,P.,Moses,R.,2005.Spectral Analysis of Signals.Prentice-Hall,Upper Saddle River,NJ.
    Tudhope,A.W.,Chilcott,C.P.,McCulloch,M.T.,Cook,E.R.,Chappell,J.,et al.,2001.Variability in the El Nino-Southern oscillation through a glacial-interglacial cycle.Science 291,1511-1517.https://doi.org/10.1126/science.1057969.
    Vervoort,J.,2015.Lu/Hf dating:the Lu/Hf isotope system.In:Jack Rink,W.,Thompson,J.W.(Eds.),Encyclopedia of Scientific Dating Method s.Encyclopedia of Earth Sciences Series.Springer.Dordrecht.https://doi.org/10.1007/978-94-007-6304-3 46.
    Voice,P.J.,Kowalewski,M.,Eriksson,KA,2011.Quantifying the timing and rate of crustal evolution:global compilation of radiometrically dated detrital zircon grains.The Journal of Geology 119,109-126.https://doi.org/10.1086/658295.
    Wendler,J.,2004.External forcing of the geomagnetic field? Implications for the cosmic ray flux-climate variability.Journal of Atmospheric and SolarTerrestrial Physics 66.1195-1203.https://doi.org/10.1016/j.jastp.2004.05.003.
    White,N.M.,Parrish,R.R.,Bickle,M.J.,Najman,M.R.,Burbank,D.,Maithani,A.,2001.Metamorphism and exhumation of the NW Himalaya constrained by U-Th-Pb analyses of detrital monazite grains from early foreland basin sediments.Journal of the Geological Society 158,625-635.https://doi.org/10.1144/jgs.158.4.625.
    Wiemer,D.,Schrank,C.E.,Murphy,D.T.,Wenham.,L,Allen,C.M.,2018.Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns.Nature Geoscience 11,357-361.https://doi.org/10.1038/s41561-018-0105-9.
    Zhang,N.,Zhong,S.J.,2011.Heat fluxes at the Earth's surface and core-mantle boundary since Pangea formation and their implications for the geomagnetic superchrons.Earth and Planetary Science Letters 306,205-21 6.https://doi.org/10.1016/j.epsl.2011.04.001.
    Zhong,S.,2006.Constraints on thermochemical convection of the mantle from plume heat flux,plume excess temperature,and upper mantle temperature.Journal of Geophysical Research 111,B04409.https://doi.org/10.1029/2005jb003972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700