用户名: 密码: 验证码:
Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years
  • 作者:Haijun ; Song ; Paul ; B. ; Wignall ; Huyue ; Song ; Xu ; Dai ; Daoliang ; Chu
  • 英文作者:Haijun Song;Paul B. Wignall;Huyue Song;Xu Dai;Daoliang Chu;State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences,China University of Geosciences;School of Earth and Environment,University of Leeds;
  • 英文关键词:sea surface temperature;;global warming;;ocean anoxic event;;dissolved oxygen;;Phanerozoic
  • 中文刊名:Journal of Earth Science
  • 英文刊名:地球科学学刊(英文版)
  • 机构:State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences,China University of Geosciences;School of Earth and Environment,University of Leeds;
  • 出版日期:2019-02-22 15:20
  • 出版单位:Journal of Earth Science
  • 年:2019
  • 期:02
  • 基金:supported by the National Natural Science Foundation of China (Nos. 41821001, 41622207, 41530104, 41661134047);; the State Key R&D Project of China (No. 2016YFA0601100);; the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB26000000);; a Marie Curie Fellowship (No. H2020MSCA-IF-2015-701652);; the Natural Environment Research Council’s Eco-PT Project (No. NE/P01377224/1);; a part of the Biosphere Evolution, Transitions and Resilience Program (BETR)
  • 语种:英文;
  • 页:18-25
  • 页数:8
  • CN:42-1788/P
  • ISSN:1674-487X
  • 分类号:P736.22
摘要
Ocean temperature and dissolved oxygen concentrations are critical factors that control ocean productivity, carbon and nutrient cycles, and marine habitat. However, the evolution of these two factors in the geologic past are still unclear. Here, we use a new oxygen isotope database to establish the sea surface temperature(SST) curve in the past 500 million years. The database is composed of 22 796 oxygen isotope values of phosphatic and calcareous fossils. The result shows two prolonged cooling events happened in the Late Paleozoic and Late Cenozoic, coinciding with two major ice ages indicated by continental glaciation data, and seven global warming events that happened in the Late Cambrian, Silurian–Devonian transition, Late Devonian, Early Triassic, Toarcian, Late Cretaceous, and Paleocene–Eocene transition. The SSTs during these warming periods are about 5–30 °C higher than the present-day level. Oxygen contents of shallow seawater are calculated from temperature, salinity, and atmospheric oxygen. The results show that major dissolved oxygen valleys of surface seawater coincide with global warming events and ocean anoxic events. We propose that the combined effect of temperature and dissolved oxygen account for the long-term evolution of global oceanic redox state during the Phanerozoic.
        Ocean temperature and dissolved oxygen concentrations are critical factors that control ocean productivity, carbon and nutrient cycles, and marine habitat. However, the evolution of these two factors in the geologic past are still unclear. Here, we use a new oxygen isotope database to establish the sea surface temperature(SST) curve in the past 500 million years. The database is composed of 22 796 oxygen isotope values of phosphatic and calcareous fossils. The result shows two prolonged cooling events happened in the Late Paleozoic and Late Cenozoic, coinciding with two major ice ages indicated by continental glaciation data, and seven global warming events that happened in the Late Cambrian, Silurian–Devonian transition, Late Devonian, Early Triassic, Toarcian, Late Cretaceous, and Paleocene–Eocene transition. The SSTs during these warming periods are about 5–30 °C higher than the present-day level. Oxygen contents of shallow seawater are calculated from temperature, salinity, and atmospheric oxygen. The results show that major dissolved oxygen valleys of surface seawater coincide with global warming events and ocean anoxic events. We propose that the combined effect of temperature and dissolved oxygen account for the long-term evolution of global oceanic redox state during the Phanerozoic.
引文
Belcher,C.M.,McElwain,J.C.,2008.Limits for Combustion in Low O2Redefine Paleoatmospheric Predictions for the Mesozoic.Science,321(5893):1197-1200.https://doi.org/10.1126/science.1160978
    Benson,B.B.,Krause,D.Jr.,1984.The Concentration and Isotopic Fractionation of Oxygen Dissolved in Freshwater and Seawater in Equilibrium with the Atmosphere1.Limnology and Oceanography,29(3):620-632.https://doi.org/10.4319/lo.1984.29.3.0620
    Bergman,N.M.,2004.COPSE:A New Model of Biogeochemical Cycling over Phanerozoic Time.American Journal of Science,304(5):397-437.https://doi.org/10.2475/ajs.304.5.397
    Berner,R.A.,2001.GEOCARB III:A Revised Model of Atmospheric CO2over Phanerozoic Time.American Journal of Science,301(2):182-204.https://doi.org/10.2475/ajs.301.2.182
    Berner,R.A.,2006.GEOCARBSULF:A Combined Model for Phanerozoic Atmospheric O2 and CO2.Geochimica et Cosmochimica Acta,70(23):5653-5664.https://doi.org/10.1016/j.gca.2005.11.032
    Brown,P.T.,Caldeira,K.,2017.Greater Future Global Warming Inferred from Earth’s Recent Energy Budget.Nature,552(7683):45-50.https://doi.org/10.1038/nature24672
    Came,R.E.,Eiler,J.M.,Veizer,J.,et al.,2007.Coupling of Surface Temperatures and Atmospheric CO2 Concentrations during the Palaeozoic Era.Nature,449(7159):198-201.https://doi.org/10.1038/nature06085
    Crowley,J.K.,Berner,R.A.,2001.CO2 and Climate Change.Science,292:870-872.https://doi.org/10.1126/science.1061664
    Dera,G.,Brigaud,B.,Monna,F.,et al.,2011.Climatic Ups and Downs in a Disturbed Jurassic World.Geology,39(3):215-218.https://doi.org/10.1130/g31579.1
    Dickson,A.J.,Cohen,A.S.,Coe,A.L.,2012.Seawater Oxygenation during the Paleocene-Eocene Thermal Maximum.Geology,40(7):639-642.https://doi.org/10.1130/g32977.1
    Falkowski,P.G.,Katz,M.E.,Milligan,A.J.,et al.,2005.The Rise of Oxygen over the Past 205 Million Years and the Evolution of Large Placental Mammals.Science,309(5744):2202-2204.https://doi.org/10.1126/science.1116047
    Fielding,C.R.,Frank,T.D.,Isbell,J.L.,2008.The Late Paleozoic Ice Age-AReview of Current Understanding and Synthesis of Global Climate Patterns.In:Fielding,C.R.,Frank,T.D.,Isbell,J.L.,eds.,Resolving the Late Paleozoic Ice Age in Time and Space,441:343-354
    Finnegan,S.,Bergmann,K.,Eiler,J.M.,et al.,2011.The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation.Science,331(6019):903-906.https://doi.org/10.1126/science.1200803
    Foster,G.L.,Royer,D.L.,Lunt,D.J.,2017.Future Climate Forcing Potentially without Precedent in the Last 420 Million Years.Nature Communications,8:14845.https://doi.org/10.1038/ncomms14845
    Glasspool,I.J.,Scott,A.C.,2010.Phanerozoic Concentrations of Atmospheric Oxygen Reconstructed from Sedimentary Charcoal.Nature Geoscience,3(9):627-630.https://doi.org/10.1038/ngeo923
    Grossman,E.L.,Mii,H.S.,Zhang,C.L.,et al.,1996.Chemical Variation in Pennsylvanian Brachiopod Shells-Diagenetic,Taxonomic,Microstructural,and Seasonal Effects.SEPM Journal of Sedimentary Research,66(5):1011-1022.https://doi.org/10.1306/d4268469-2b26-11d7-8648000102c1865d
    Grossman,E.L.,2012.Oxygen Isotope Stratigraphy.In:Gradstein,F.M.,Ogg,J.G.,Schmitz,M.D.,et al.,eds.,The Geologic Time Scale 2012.Elsevier.195-220
    Hay,W.W.,Migdisov,A.,Balukhovsky,A.N.,et al.,2006.Evaporites and the Salinity of the Ocean during the Phanerozoic:Implications for Climate,Ocean Circulation and Life.Palaeogeography,Palaeoclimatology,Palaeoecology,240(1/2):3-46.https://doi.org/10.1016/j.palaeo.2006.03.044
    Hays,P.D.,Grossman,E.L.,1991.Oxygen Isotopes in Meteoric Calcite Cements as Indicators of Continental Paleoclimate.Geology,19(5):441.https://doi.org/10.1130/0091-7613(1991)019<0441:oiimcc>2.3.co;2
    Henkes,G.A.,Passey,B.H.,Grossman,E.L.,et al.,2018.Temperature Evolution and the Oxygen Isotope Composition of Phanerozoic Oceans from Carbonate Clumped Isotope Thermometry.Earth and Planetary Science Letters,490:40-50.https://doi.org/10.1016/j.epsl.2018.02.001
    Hughes,T.P.,Kerry,J.T.,álvarez-Noriega,M.,et al.,2017.Global Warming and Recurrent Mass Bleaching of Corals.Nature,543(7645):373-377.https://doi.org/10.1038/nature21707
    Jenkyns,H.C.,2010.Geochemistry of Oceanic Anoxic Events.Geochemistry,Geophysics,Geosystems,11(3):Q03004.https://doi.org/10.1029/2009gc002788
    Joachimski,M.M.,van Geldern,R.,Breisig,S.,et al.,2004.Oxygen Isotope Evolution of Biogenic Calcite and Apatite during the Middle and Late Devonian.International Journal of Earth Sciences,93(4):542-553.https://doi.org/10.1007/s00531-004-0405-8
    Joachimski,M.M.,Lai,X.,Shen,S.,et al.,2012.Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction.Geology,40(3):195-198.https://doi.org/10.1130/g32707.1
    Kennett,J.P.,Stott,L.D.,1991.Abrupt Deep-Sea Warming,Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene.Nature,353(6341):225-229.https://doi.org/10.1038/353225a0
    Krause,A.J.,Mills,B.J.W.,Zhang,S.,et al.,2018.Stepwise Oxygenation of the Paleozoic Atmosphere.Nature Communications,9(1):4081.https://doi.org/10.1038/s41467-018-06383-y
    Lécuyer,C.,Amiot,R.,Touzeau,A.,et al.,2013.Calibration of the Phosphateδ18O Thermometer with Carbonate-Water Oxygen Isotope Fractionation Equations.Chemical Geology,347:217-226.https://doi.org/10.13039/501100004794
    Mc Elwain,J.C.,Wade-Murphy,J.,Hesselbo,S.P.,2005.Changes in Carbon Dioxide during an Oceanic Anoxic Event Linked to Intrusion into Gondwana Coals.Nature,435(7041):479-482.https://doi.org/10.1038/nature03618
    Meinshausen,M.,Meinshausen,N.,Hare,W.,et al.,2009.Greenhouse-Gas Emission Targets for Limiting Global Warming to 2?°C.Nature,458(7242):1158-1162.https://doi.org/10.1038/nature08017
    Meyer,K.M.,Kump,L.R.,2008.Oceanic Euxinia in Earth History:Causes and Consequences.Annual Review of Earth and Planetary Sciences,36(1):251-288.https://doi.org/10.1146/annurev.earth.36.031207.124256
    O’Brien,C.L.,Robinson,S.A.,Pancost,R.D.,et al.,2017.Cretaceous SeaSurface Temperature Evolution:Constraints from TEX 86 and Planktonic Foraminiferal Oxygen Isotopes.Earth-Science Reviews,172:224-247.https://doi.org/10.1016/j.earscirev.2017.07.012
    Penn,J.L.,Deutsch,C.,Payne,J.L.,et al.,2018.Temperature-Dependent Hypoxia Explains Biogeography and Severity of End-Permian Marine Mass Extinction.Science,362(6419):eaat1327.https://doi.org/10.1126/science.aat1327
    Rey,K.,Amiot,R.,Fourel,F.,et al.,2016.Global Climate Perturbations during the Permo-Triassic Mass Extinctions Recorded by Continental Tetrapods from South Africa.Gondwana Research,37:384-396.https://doi.org/10.1016/j.gr.2015.09.008
    Royer,D.L.,Berner,R.A.,Monta?ez,I.P.,et al.,2004.CO2 as a Primary Driver of Phanerozoic Climate.GSA Today,14(3):3-7.https://doi.org/10.1130/1052-5173(2004)014<4:caapdo>2.0.co;2
    Royer,D.L.,Donnadieu,Y.,Park,J.,et al.,2014.Error Analysis of CO2 and O2 Estimates from the Long-Term Geochemical Model GEOCARB-SULF.American Journal of Science,314(9):1259-1283.https://doi.org/10.2475/09.2014.01
    Sarmiento,J.L.,Herbert,T.D.,Toggweiler,J.R.,1988.Causes of Anoxia in the World Ocean.Global Biogeochemical Cycles,2(2):115-128.https://doi.org/10.1029/gb002i002p00115
    Shaviv,N.J.,Veizer,J.,2003.Celestial Driver of Phanerozoic Climate?.GSAToday,13(7):4-10.https://doi.org/10.1130/1052-5173(2003)013<0004:cdopc>2.0.co;2
    Sinninghe Damsté,J.S.,van Bentum,E.C.,Reichart,G.J.,et al.,2010.ACO2 Decrease-Driven Cooling and Increased Latitudinal Temperature Gradient during the Mid-Cretaceous Oceanic Anoxic Event 2.Earth and Planetary Science Letters,293(1/2):97-103.https://doi.org/10.1016/j.epsl.2010.02.027
    Sluijs,A.,Schouten,S.,Pagani,M.,et al.,2006.Subtropical Arctic Ocean Temperatures during the Palaeocene/Eocene Thermal Maximum.Nature,441(7093):610-613.https://doi.org/10.1038/nature04668
    Song,H.J.,Wignall,P.B.,Chu,D.L.,et al.,2014.Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath.Scientific Reports,4(1):4132.https://doi.org/10.1038/srep04132
    Song,H.J.,Jiang,G.Q.,Poulton,S.W.,et al.,2017.The Onset of Widespread Marine Red Beds and the Evolution of Ferruginous Oceans.Nature Communications,8(1):399.https://doi.org/10.1038/s41467-017-00502-x
    Stramma,L.,Johnson,G.C.,Sprintall,J.,et al.,2008.Expanding OxygenMinimum Zones in the Tropical Oceans.Science,320(5876):655-658.https://doi.org/10.1126/science.1153847
    Sun,Y.,Joachimski,M.M.,Wignall,P.B.,et al.,2012.Lethally Hot Temperatures during the Early Triassic Greenhouse.Science,338(6105):366-370.https://doi.org/10.1126/science.1224126
    Tripati,A.,Elderfield,H.,2005.Deep-Sea Temperature and Circulation Changes at the Paleocene-Eocene Thermal Maximum.Science,308(5730):1894-1898.https://doi.org/10.1126/science.1109202
    Trotter,J.A.,Williams,I.S.,Barnes,C.R.,et al.,2008.Did Cooling Oceans Trigger Ordovician Biodiversification?Evidence from Conodont Thermometry.Science,321(5888):550-554.https://doi.org/10.1126/science.1155814
    Veizer,J.,Godderis,Y.,Fran?ois,L.M.,2000.Evidence for Decoupling of Atmospheric CO2 and Global Climate during the Phanerozoic Eon.Nature,408(6813):698-701.https://doi.org/10.1038/35047044
    Veizer,J.,Prokoph,A.,2015.Temperatures and Oxygen Isotopic Composition of Phanerozoic Oceans.Earth-Science Reviews,146:92-104.https://doi.org/10.1016/j.earscirev.2015.03.008
    Zachos,J.C.,Wara,M.W.,Bohaty,S.,et al.,2003.A Transient Rise in Tropical Sea Surface Temperature during the Paleocene-Eocene Thermal Maximum.Science,302(5650):1551-1554.https://doi.org/10.1126/science.1090110
    Zachos,J.C.,Schouten,S.,Bohaty,S.,et al.,2006.Extreme Warming of MidLatitude Coastal Ocean during the Paleocene-Eocene Thermal Maximum:Inferences from TEX86 and Isotope Data.Geology,34(9):737-740.https://doi.org/10.1130/g22522.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700