用户名: 密码: 验证码:
单壁碳纳米管对太平洋牡蛎(Crassostrea gigas)的毒性效应及生物体防御机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Toxicity of Single-Walled Carbon Nanotubes (SWCNTs) to Pacific Oyster (Crassostrea gigas) and the Defense Mechanism Involved
  • 作者:杨占宁 ; 丁光辉 ; 于源志 ; 李西山 ; 张楠楠 ; 李瑞娟 ; 张晶 ; 崔福旭
  • 英文作者:Yang Zhanning;Ding Guanghui;Yu Yuanzhi;Li Xishan;Zhang Nannan;Li Ruijuan;Zhang Jing;Cui Fuxu;College of Environmental Science and Engineering,Dalian Maritime University;School of Life Science,Wuhan University;College of Environment and Chemical Technology,Dalian University;
  • 关键词:单壁碳纳米管 ; 太平洋牡蛎 ; 毒性效应 ; 防御机制
  • 英文关键词:SWCNTs;;Crassostrea gigas;;toxicity;;the defense mechanism
  • 中文刊名:生态毒理学报
  • 英文刊名:Asian Journal of Ecotoxicology
  • 机构:大连海事大学环境科学与工程学院;武汉大学生命科学学院;大连大学环境与化工学院;
  • 出版日期:2019-02-15
  • 出版单位:生态毒理学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金(51479016,51308083);; 辽宁省博士科研启动基金(20170520368)
  • 语种:中文;
  • 页:93-101
  • 页数:9
  • CN:11-5470/X
  • ISSN:1673-5897
  • 分类号:X171.5
摘要
碳纳米管的生态安全和健康风险日益受到人们的广泛关注。本文采用典型的海洋底栖生物——太平洋牡蛎(Crassostrea gigas, C. gigas)作为受试生物,研究了单壁碳纳米管(Single-Walled Carbon Nanotubes, SWCNTs)暴露对其造成的毒性效应及牡蛎自身的防御机制,以期为碳纳米管的海洋生态风险评价提供科学依据。在0.1~10 mg·L~(-1)的SWCNTs暴露96 h后,太平洋牡蛎鳃和消化腺中的丙二醛(malondialdehyde, MDA)含量显著增加(P≤0.05),总超氧化物歧化酶(superoxide dismutase, SOD)和过氧化氢酶(catalase, CAT)活性呈现显著的剂量依赖性升高(P≤0.05),cat、hsp70、aox及caspase-7等基因的相对表达量显著上调(P≤0.05)。相比于单独暴露,P-gp蛋白抑制剂Tariquidar与SWCNTs的复合暴露显著增加了鳃和消化腺中MDA含量,产生了更严重的氧化损伤。这些结果表明,SWCNTs暴露对太平洋牡蛎的鳃和消化腺造成了一定程度的氧化损伤,而牡蛎体内的抗氧化系统和多外源性物质抗性机制在防御SWCNTs的过程中起到了至关重要的作用。
        The ecological and health risks of carbon nanotubes are receiving more attention. In this study, Pacific oyster(Crassostrea gigas), a kind of typical marine benthic organism, was exposed to single-walled carbon nanotubes(SWCNTs) to investigate the toxicity induced by SWCNTs and the defense mechanism of C.gigas. After 96-h exposure to 0.1-10 mg L-1 SWCNTs, the content of malondialdehyde(MDA) in gills and digestive glands increased significantly(P≤0.05), the activities of total superoxide dismutase(SOD) and catalase(CAT) showed the significant dose-dependent increase(P≤0.05), and the relative expressions of genes, i.e., cat, hsp70, aox and caspase-7, were significantly up-regulated(P≤0.05). The co-exposure of Tariquidar(P-gp protein inhibitor) and SWCNTs induced the significant increase of the MDA content in gills and digestive glands(P≤0.05), indicating that more serious oxidative damage were caused by the mixture. The results revealed that the antioxidant system and Multi-xenobiotic Resistance Mechanism played vital roles in the defense system of Pacific oyster against the SWCNTs exposure.
引文
[1]Arun A B.Toxicology of carbon nanotubes—A review[J].International Journal of Applied Engineering Research,2016,11(1):159-168
    [2]Zhao F,Meng H,Yan L,et al.Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes,metal nanomaterials and quantum dots in vivo[J].Science Bulletin,2015,60(1):3-20
    [3]Smith C J,Shaw B J,Handy R D.Toxicity of single walled carbon nanotubes to rainbow trout,(Oncorhynchus mykiss):Respiratory toxicity,organ pathologies,and other physiological effects[J].Aquatic Toxicology,2007,82(2):94-109
    [4]Thakkar M,Mitra S,Wei L.Effect on growth,photosynthesis,and oxidative stress of single walled carbon nanotubes exposure to marine alga Dunaliella tertiolecta[J].Journal of Nanomaterials,2016(10):1-9
    [5]Lovern S B,Klaper R.Daphnia magna mortality when exposed to titanium dioxide and fullerene(C60)nanoparticles[J].Environmental Toxicology&Chemistry,2010,25(4):1132-1137
    [6]Zhang H,Slutsky A S,Vincent J L.Oxygen free radicals in ARDS,septic shock and organ dysfunction[J].Intensive Care Medicine,2000,26(4):474-476
    [7]Sies H.Biological redox systems and oxidative stress[J].Cellular&Molecular Life Sciences,2007,64(17):2181-2188
    [8]Canesi L,Ciacci C,Fabbri R,et al.Bivalve molluscs as a unique target group for nanoparticle toxicity[J].Marine Environmental Research,2012,76(4):16-21
    [9]Ringwood A H,Levipolyachenko N,Carroll D L.Fullerene exposures with oysters:Embryonic,adult,and cellular responses[J].Environmental Science&Technology,2009,43(18):7136-7141
    [10]Dagnino A,Allen J I,Moore M N,et al.Development of an expert system for the integration of biomarker responses in mussels into an animal health index[J].Biomarkers,2007,12(2):155-172
    [11]Poland C A,Duffin R,Kinloch I,et al.Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study[J].Nature Nanotechnology,2008,3(7):423-428
    [12]Ringwood A H,Conners D E,Dinovo A.The effects of copper exposures on cellular responses in oysters[J].Marine Environmental Research,1998,46(1-5):591-595
    [13]Trevisan R,Delapedra G,Mello D F,et al.Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas,leading to mitochondrial disruption and oxidative stress[J].Aquatic Toxicology,2014,153(8):27-38
    [14]D'Agata A,Fasulo S,Dallas L J,et al.Enhanced toxicity of'bulk'titanium dioxide compared to'fresh'and'aged'nano-Ti O2in marine mussels(Mytilus galloprovincialis)[J].Nanotoxicology,2014,8(5):549-558
    [15]Hughes F M,Foster B,Grewal S,et al.Apoptosis as a host defense mechanism in Crassostrea virginica and its modulation by Perkinsus marinus[J].Fish&Shellfish Immunology,2010,29(2):247-257
    [16]Wang X.The expanding role of mitochondria in apoptosis[J].Genes&Development,2001,15(22):2922-2933
    [17]葛春梅,黄茜枝,林道辉,等.人工纳米材料对贝类生态毒理效应的研究进展[J].生态毒理学报,2015,10(4):1-16Ge C M,Huang X Z,Wang Y J,et al.Research progress in ecotoxic effects of manufactured nanomaterials on shellfish[J].Asian Journal of Ecotoxicology,2015,10(4):1-16(in Chinese)
    [18]Gong N,Shao K S,Li G Y,et al.Nickel oxide nanoparticles induce oxidative stress and morphological changes on marine Chlorella vulgaris[J].Advanced Materials Research,2014,955-959(11):956-960
    [19]Tedesco S,Doyle H,Redmond G,et al.Gold nanoparticles and oxidative stress in Mytilus edulis[J].Marine Environmental Research,2008,66(1):131-133
    [20]Canesi L,Fabbri R,Gallo G,et al.Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles(Nano carbon black,C60fullerene,Nano-Ti O2,Nano-Si O2)[J].Aquatic Toxicology,2010,100(2):168-177
    [21]Pan J F,Buffet P E,Poirier L,et al.Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate:The Tellinid clam Scrobicularia plana[J].Environmental Pollution,2012,168(3):37-43
    [22]Yip J Y,Vanlerberghe G C.Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of nutrient uptake[J].Physiologia Plantarum,2010,112(3):327-333
    [23]Purvis A C,Shewfelt R L.Does the alternative pathway ameliorate chilling injury in sensitive plant tissues?[J].Physiologia Plantarum,1993,88(4):712-718
    [24]Maxwell D P,Wang Y,Mcintosh L.The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells[J].Proceedings of the National Academy of Sciences of the United States of America,1999,96(14):8271-8276
    [25]Zhou G,Kong Y,Bi Y,et al.Possible participation of active oxygen species in the induction of cyanide-resistant pathway at the initial senescence of tobacco callus[J].Russian Journal of Plant Physiology,2001,48(5):588-594
    [26]Park C J,Seo Y S.Heat shock proteins:A review of the molecular chaperones for plant immunity[J].Plant Pathology Journal,2015,31(4):323-333
    [27]Clegg J S,Uhlinger K R,Jackson S A,et al.Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas[J].Molecular Marine Biology and Biotechnology,1998,7(1):21-30
    [28]Mukhopadhyay I,Nazir A,Saxena D K,et al.Heat shock response:Hsp70 in environmental monitoring[J].Journal of Biochemical&Molecular Toxicology,2003,17(5):249-254
    [29]Hamdoun A M,Cheney D P,Cherr G N.Phenotypic plasticity of HSP70 and hsp70 gene expression in the Pacific oyster(Crassostrea gigas):Implications for thermal limits and induction of thermal tolerance[J].Biological Bulletin,2003,205(2):160-169
    [30]Cicchetti R,Divizia M,Valentini F,et al.Effects of single-wall carbon nanotubes in human cells of the oral cavity:Geno-cytotoxic risk[J].Toxicology in Vitro,2011,25(8):1811-1819
    [31]Epel D.Use of multidrug transporters as first lines of defense against toxins in aquatic organisms[J].Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology,1998,120(1):23-28
    [32]Ambudkar S V,Dey S,Hrycyna C A,et al.Biochemical,cellular,and pharmacological aspects of the multidrug transporter[J].Annual Review of Pharmacology and Toxicology,1999,39(1):361-398
    [33]Huang L,Wang J,Chen W C,et al.P-glycoprotein expression in Perna viridis after exposure to Prorocentrum lima,a dinoflagellate producing DSP toxins[J].Fish&Shellfish Immunology,2014,39(2):254-262
    [34]Palace V P,Evans R E,Wautier K G,et al.Interspecies differences in biochemical,histopathological,and population responses in four wild fish species exposed to ethynylestradiol added to a whole lake[J].Canadian Journal of Fisheries&Aquatic Sciences,2009,66(11):1920-1935

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700