用户名: 密码: 验证码:
2种培养方式对小新月菱形藻生长及菌群结构的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of two breeding methods on growth and bacterial structure of Nitzschia closterium f. minutissima
  • 作者:唐亚鹏 ; 王瑞旋 ; 黄建华 ; 杨丽诗 ; 江世贵 ; 林黑着 ; 王国福
  • 英文作者:TANG Yapeng;WANG Ruixuan;HUANG Jianhua;YANG Lishi;JIANG Shigui;LIN Heizhuo;WANG Guofu;Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs,South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences;College of Fisheries, Tianjin Agricultural University;Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences;Hainan Academy of Ocean and Fisheries Sciences;
  • 关键词:小新月菱形藻 ; 培养方式 ; pH ; 溶解氧 ; 菌落结构 ; 负压光生物反应器
  • 英文关键词:Nitzschia closterium f.minutissima;;cultured method;;pH;;dissolved oxygen;;bacterial structure;;negative pressure photobioreactor
  • 中文刊名:南方水产科学
  • 英文刊名:South China Fisheries Science
  • 机构:中国水产科学研究院南海水产研究所农业农村部南海渔业资源开发利用重点实验室;天津农学院水产学院;中国水产科学研究院南海水产研究所深圳试验基地;海南省海洋与渔业科学院;
  • 出版日期:2019-10-05
  • 出版单位:南方水产科学
  • 年:2019
  • 期:05
  • 基金:深圳市未来产业发展专项(JCYJ20170412110605075,20170428152352908);; 现代农业(虾蟹)产业技术体系建设专项资金(CARS-47)
  • 语种:中文;
  • 页:57-64
  • 页数:8
  • CN:44-1683/S
  • ISSN:2095-0780
  • 分类号:S963.213
摘要
文章以小新月菱形藻(Nitzschia closterium f. minutissima)为研究对象,分析比较了小新月菱形藻在负压光生物反应器与开放式桶培养下,藻密度、pH、溶解氧及菌落结构的变化情况。结果表明,在负压光生物反应器培养下的藻密度可达到1.33×10~7个·mL~(–1),明显高于开放式培养的藻密度(8.36×10~6个·mL~(–1))。藻液中pH随藻密度增加而升高,两者呈显著正相关(P<0.01),在负压光生物反应器及开放式培养环境中pH最高值分别为10.3和9.3。溶解氧与pH变化趋势相反,在负压光生物反应器内溶解氧随藻密度增加而降低,最后稳定在6.5 mg·L~(–1),溶解氧的下降可能与玫瑰杆菌(Roseobacter)成为优势细菌有关。利用16S rDNA基因的高通量测序技术,分析在培养过程中藻际菌群的结构变化,发现菌落的多样性显著下降(P<0.05),培养前期主要以变形杆菌(Proteobacteria)和拟杆菌(Bacteroidetes)为优势细菌,在负压光生物反应器内培养后期主要以蓝细菌(Cyanobacteria)与玫瑰杆菌为优势细菌,其菌落结构与开放式桶存在明显差异。
        We compared the density, pH, dissolved oxygen and colony structure of Nitzschia closterium f. minutissima bred in negative pressure photobioreactor and open bucket, respectively. It is shown that the algae grew fast in negative pressure photobioreactor with the highest density of 1.33×10~7 cells·mL~(–1), significantly higher than that in open bucket(8.36×10~6 cells·mL~(–1)). The pH in algal solution increased with increase of algal density, and there was a significant positive correlation between them(P<0.01). The highest pH values in negative pressure photobioreactor and open bucket were 10.3 and 9.3, respectively. Oppositely, in negative pressure photobioreactor, the dissolve oxygen of algea decreased with increase of algal density, which finally stabilized at about 6.5 mg·L~(–1). The decline of dissolved oxygen might be related to the fact that Roseobacter had become the dominant bacteria. Results of 16S rDNA gene high-throughput sequencing show that the bacterial diversity decreased significantly(P<0.05). Proteobacteria and Bacteroidetes were dominant bacteria at early stage of breeding. However, the dominant bacteria were Cyanobacteria and Roseobacter at late stage in negative pressure photobioreactor, which was obviously different from that in open bucket.
引文
[1]李炳乾,刘颖芬,刘洪岩,等.小新月菱形藻生长条件及半连续培养条件研究[J].水产科技情报, 2012(2):55-58.
    [2]刘娟妮,胡萍,姚领,等.微藻培养中光生物反应器的研究进展[J].食品科学, 2006, 27(12):772-777.
    [3]张芬芬,马晓建,常春,等.气升式微藻光生物反应器的设计研究进展[J].现代化工, 2016, 36(10):46-49.
    [4]刘玉环,黄磊,王允圃,等.大规模微藻光生物反应器的研究进展[J].生物加工过程, 2016, 14(1):65-73.
    [5]周进,林光辉,蔡中华.微生物在藻际环境中的物质循环作用[J].应用生态学报, 2016, 27(8):2708-2716.
    [6]王少沛,曹煜成,李卓佳,等.水生环境中细菌与微藻的相互关系及其实际应用[J].南方水产, 2008, 4(1):76-80.
    [7]熊青山,潘秋玲,王琴,等.溶藻微生物菌群的富集及其溶藻因素[J].应用与环境生物学报, 2016, 22(6):1140-1144.
    [8]SHIN H, LEE E, SHIN J, et al. Elucidation of the bacterial communities associated with the harmful microalgae Alexandrium tamarense and Cochlodinium polykrikoides using nanopore sequencing[J]. Sci Rep, 2018, 8(1):5323.
    [9]WANG H, HILL R T, ZHENG T, et al. Effects of bacterial communities on biofuel-producing microalgae:stimulation, inhibition and harvesting[J]. Crit Rev Biotechnol, 2014, 36(2):1-12.
    [10]JUAN F, INéS G, MARíA C, et al. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds[J]. Mar Drug, 2016, 14(5):100.
    [11]贾雨川,阎华,关昌峰,等.内置组合转子新型管式光生物反应器及微藻光暗周期研究[J].现代化工, 2017, 37(9):168-170.
    [12]De los DANIEL C V, GARCíA-CRUZ E L, FRANCOMORGADO M, et al. Short-term evaluation of the photosynthetic activity of an alkaliphilic microalgae consortium in a novel tubular closed photobioreactor[J]. J Appl Phycol, 2016, 28(2):795-802.
    [13]张成会.利用管式光生物反应器培养湛江等鞭金藻的研究[D].湛江:广东海洋大学, 2015:32-40.
    [14]肖玉朋,戴玉杰,申世刚,等.户外管式光生物反应器培养发状念珠藻细胞[J].食品科技, 2014, 39(3):2-6.
    [15]朱军保.沙漠微藻管式光生物反应器研制及其相关研究[D].石河子:石河子大学, 2015:41-48.
    [16]ZHU J Y, RONG J F, ZONG B N. Factors in mass cultivation of microalgae for biodiesel[J]. Chin J Catal, 2013, 34(1):80-100.
    [17]万晓安,杨正健,杨林.光生物反应器中微藻生长影响因子研究进展[J].应用化工, 2016, 45(6):1140-1145, 1154.
    [18]石娟,潘克厚.不同光照条件对小新月菱形藻和等鞭金藻8701生长及生化成分的影响[J].中国水产科学, 2004, 11(2):121-128.
    [19]梁英,刁永芳,陈书秀,等.温度对小新月菱形藻叶绿素荧光特性及生长的影响[J].水产科学, 2011, 30(8):435-440.
    [20]张海阳.基于射流流场的微藻混凝共聚气浮采收基础研究[D].徐州:中国矿业大学, 2013:44.
    [21]黄新雪.螺旋转子管式光生物反应器流体动力学特性研究[D].北京:北京化工大学, 2017:39.
    [22]游亮,崔莉凤,刘载文,等.藻类生长过程中DO、pH与叶绿素相关性分析[J].环境科学与技术, 2007, 30(9):42-44.
    [23]VALDES F J, HEMANDEZ M R, CATALA L, et al. Estimation of CO2 stripping/CO2 microalgae consumption ratios in a bubble column photobioreactor using the analysis of the pH profiles.Application to Nannochloropsis oculata microalgae culture[J].Bioresour Technol, 2012, 119:1-6.
    [24]VADLAMANI A, VIAMAJALA S, PENDYALA B, et al. Cultivation of microalgae at extreme alkaline pH conditions:a novel approach for biofuel production[J]. ACS Sustainable Chem Eng,2017, 5(8):7284-7294.
    [25]LAKANIEMI A M, HULATT C J, WAKEMAN K D, et al. Eukaryotic and prokaryotic microbial communities during microalgal biomass production[J]. Bioresour Technol, 2012, 124:387-393.
    [26]LURIA C M, AMARAL-ZETTLER L A, DUCKLOW H W, et al. Seasonal shifts in bacterial community responses to phytoplankton-derived dissolved organic matter in the western antarctic peninsula[J]. Front Microbiol, 2017, 8:2117.
    [27]王剑.典型赤潮藻类可培养藻际细菌的分子鉴定与藻菌关系研究[D].广州:暨南大学, 2014:41.
    [28]苗祯.北极微藻藻际细菌类群结构及其相互作用机制研究[D].济南:山东大学, 2013:42-44.
    [29]苗祯,杜宗军,李会荣,等. 5株北极微藻藻际环境的细菌多样性[J].生态学报, 2015, 35(5):1587-1600.
    [30]FANG F, GAO Y, GAN L, et al. Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu,China[J]. J Appl Phycol, 2018, 30(3):1777-1793.
    [31]ZHANG Z M, YU Z D, ZHU L, et al. Gradient reduced aeration in an enhanced aerobic granular sludge process optimizes the dominant microbial community and its function[J]. Environ Sci,2018, 4(5):680-688.
    [32]PRABAGARAN S R, MANORAMA R, DELILLE D, et al. Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica[J]. FEMS Microbiol Ecol, 2010, 59(2):342-355.
    [33]IVANOVA E P, GORSHKOVA N M, SAWABE T, et al. Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov. respectively from a starfish(Stellaster equestris)and sea grass(Zostera marina)[J]. Int J System Evolution Microbiol, 2004, 54(2):475-480.
    [34]PARK J R, BAE J W, NAM Y D, et al. Sulfitobacter litoralis sp.nov., a marine bacterium isolated from the East Sea, Korea[J]. Int J Syst Evol Microbiol, 2007, 57(4):692-695.
    [35]PALACIOS L, ARAHAL D R, REGUERA B, et al. Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V[J]. Int J Sys Evolution Microbiol, 2006,56(8):1991-1995.
    [36]JUNG M Y, SHIN K S, KIM S, et al. Hoeflea halophila sp. nov.,a novel bacterium isolated from marine sediment of the East Sea,Korea[J]. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol,2013, 103(5):971-978.
    [37]YANG Q, JIANG Z W, HUANG C H, et al. Hoeflea prorocentri sp. nov. isolated from a culture of the marine dinoflagellate Prorocentrum mexicanum PM01[J]. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol, 2018, 111(10):1-9.
    [38]陈正浩,张永雨,杨素萍.海洋玫瑰杆菌类群研究进展[J].生态学报, 2015, 35(5):1620-1629.
    [39]GENG H F, BELAS R. Molecular mechanisms underlying roseobacter-phytoplankton symbioses[J]. Curr Opin Biotechnol, 2010,21(3):332-338.
    [40]CROFT M T, LAWRENCE A D, RAUX-DEERY E, et al. Algae acquire vitamin B-12 through a symbiotic relationship with bacteria[J]. Nature, 2005, 438(764):90-93.
    [41]杨小茹,苏建强,郑小伟,等.基于分子技术的1株产毒藻藻际细菌多样性分析[J].环境科学, 2009, 30(1):271-279.
    [42]王剑,王朝晖,熊毅俊.不同时期条纹环沟藻可培养藻际细菌研究[J].中国环境科学, 2014, 34(6):1540-1547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700